These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 35085798)
1. A biodegradable magnesium alloy vascular stent structure: Design, optimisation and evaluation. Li Y; Wang Y; Shen Z; Miao F; Wang J; Sun Y; Zhu S; Zheng Y; Guan S Acta Biomater; 2022 Apr; 142():402-412. PubMed ID: 35085798 [TBL] [Abstract][Full Text] [Related]
2. In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy. Chen C; Chen J; Wu W; Shi Y; Jin L; Petrini L; Shen L; Yuan G; Ding W; Ge J; Edelman ER; Migliavacca F Biomaterials; 2019 Nov; 221():119414. PubMed ID: 31419654 [TBL] [Abstract][Full Text] [Related]
3. Finite element analyses for optimization design of biodegradable magnesium alloy stent. Li J; Zheng F; Qiu X; Wan P; Tan L; Yang K Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():705-14. PubMed ID: 25063172 [TBL] [Abstract][Full Text] [Related]
4. [Mechanical analysis on a new type of biodegradable magnesium-alloy stent]. Wang X; Cui F; Li J; Zhao X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):338-41. PubMed ID: 19499798 [TBL] [Abstract][Full Text] [Related]
5. Multi-Objective Optimization of Bioresorbable Magnesium Alloy Stent by Kriging Surrogate Model. Wang H; Jiao L; Sun J; Yan P; Wang X; Qiu T Cardiovasc Eng Technol; 2022 Dec; 13(6):829-839. PubMed ID: 35414048 [TBL] [Abstract][Full Text] [Related]
6. Finite element simulation and optimization of mechanical performance of the magnesium-alloy biliary stent. Zhang Y; Ni X; Pan C Int J Numer Method Biomed Eng; 2022 May; 38(5):e3592. PubMed ID: 35293160 [TBL] [Abstract][Full Text] [Related]
7. [Finite element analysis for compression and expansion behavior of magnesium stent]. Chen H; Liu X; Yuan G; Zhang L; Li Z; Luo Q; Lin F Zhongguo Yi Liao Qi Xie Za Zhi; 2014 May; 38(3):161-4, 176. PubMed ID: 25241506 [TBL] [Abstract][Full Text] [Related]
8. Finite element analyses for improved design of peripheral stents. Lim YH; Jeong HY Comput Methods Biomech Biomed Engin; 2017 May; 20(6):653-662. PubMed ID: 28349767 [TBL] [Abstract][Full Text] [Related]
9. Plastic strains during stent deployment have a critical influence on the rate of corrosion in absorbable magnesium stents. Galvin E; Cummins C; Yoshihara S; Mac Donald BJ; Lally C Med Biol Eng Comput; 2017 Aug; 55(8):1261-1275. PubMed ID: 27785607 [TBL] [Abstract][Full Text] [Related]
10. [Comparative study on the mechanical properties of lower limb arterial stents under various deformation modes]. Wang T; Feng H; Wang K Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):303-309. PubMed ID: 33913290 [TBL] [Abstract][Full Text] [Related]
11. Design optimization of stent and its dilatation balloon using kriging surrogate model. Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895 [TBL] [Abstract][Full Text] [Related]
12. The optimal structural analysis of cobalt-chromium alloy (L-605) coronary stents. Wang H; Wang X; Qian H; Lou D; Song M; Zhao X Comput Methods Biomech Biomed Engin; 2021 Nov; 24(14):1566-1577. PubMed ID: 33759650 [TBL] [Abstract][Full Text] [Related]
13. Finite element analysis of the mechanical performance of a zinc alloy stent with the tenon-and-mortise structure. Wang S; Wu D; Li G; Peng K; Mu Y; Ohta M; Anzai H; Qiao A Technol Health Care; 2022; 30(2):351-359. PubMed ID: 34334438 [TBL] [Abstract][Full Text] [Related]
14. A strain-mediated corrosion model for bioabsorbable metallic stents. Galvin E; O'Brien D; Cummins C; Mac Donald BJ; Lally C Acta Biomater; 2017 Jun; 55():505-517. PubMed ID: 28433790 [TBL] [Abstract][Full Text] [Related]
16. A numerical corrosion-fatigue model for biodegradable Mg alloy stents. Shen Z; Zhao M; Zhou X; Yang H; Liu J; Guo H; Zheng Y; Yang JA Acta Biomater; 2019 Oct; 97():671-680. PubMed ID: 31394294 [TBL] [Abstract][Full Text] [Related]
17. Experimental data confirm numerical modeling of the degradation process of magnesium alloys stents. Wu W; Chen S; Gastaldi D; Petrini L; Mantovani D; Yang K; Tan L; Migliavacca F Acta Biomater; 2013 Nov; 9(10):8730-9. PubMed ID: 23128160 [TBL] [Abstract][Full Text] [Related]
18. Finite element shape optimization for biodegradable magnesium alloy stents. Wu W; Petrini L; Gastaldi D; Villa T; Vedani M; Lesma E; Previtali B; Migliavacca F Ann Biomed Eng; 2010 Sep; 38(9):2829-40. PubMed ID: 20446037 [TBL] [Abstract][Full Text] [Related]
19. Investigation on large elastoplastic deformation in expansion and springback for a composited bioresorbable stent. Chen Y; Shang X J Mech Behav Biomed Mater; 2021 Jul; 119():104500. PubMed ID: 33894526 [TBL] [Abstract][Full Text] [Related]
20. Comparing coronary stent material performance on a common geometric platform through simulated bench testing. Grogan JA; Leen SB; McHugh PE J Mech Behav Biomed Mater; 2012 Aug; 12():129-38. PubMed ID: 22705476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]