These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35085798)

  • 21. Bending behaviors of fully covered biodegradable polydioxanone biliary stent for human body by finite element method.
    Liu Y; Zhu G; Yang H; Wang C; Zhang P; Han G
    J Mech Behav Biomed Mater; 2018 Jan; 77():157-163. PubMed ID: 28917130
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study on the bending behavior of biodegradable metal cerebral vascular stents using finite element analysis.
    Shi W; Li H; Zhu T; Jin Y; Wang H; Yang J; Zhao D
    J Biomech; 2020 Jul; 108():109856. PubMed ID: 32635992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Future Balloon-Expandable Stents: High or Low-Strength Materials?
    Khalilimeybodi A; Alishzadeh Khoei A; Sharif-Kashani B
    Cardiovasc Eng Technol; 2020 Apr; 11(2):188-204. PubMed ID: 31836964
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational micromechanics of bioabsorbable magnesium stents.
    Grogan JA; Leen SB; McHugh PE
    J Mech Behav Biomed Mater; 2014 Jun; 34():93-105. PubMed ID: 24566380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent.
    Bobel AC; Petisco S; Sarasua JR; Wang W; McHugh PE
    Cardiovasc Eng Technol; 2015 Dec; 6(4):519-32. PubMed ID: 26577483
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Numerical modeling of shape memory alloy vascular stent's self-expandable progress and "optimized grid" of stent].
    Xu Q; Liu Y; Wang B; He J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):1101-6. PubMed ID: 19024455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A quantitative study on magnesium alloy stent biodegradation.
    Gao Y; Wang L; Gu X; Chu Z; Guo M; Fan Y
    J Biomech; 2018 Jun; 74():98-105. PubMed ID: 29735265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical analysis of a novel biodegradable zinc alloy stent based on a degradation model.
    Peng K; Cui X; Qiao A; Mu Y
    Biomed Eng Online; 2019 Apr; 18(1):39. PubMed ID: 30940146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling and Experimental Studies of Coating Delamination of Biodegradable Magnesium Alloy Cardiovascular Stents.
    Chen C; Tan J; Wu W; Petrini L; Zhang L; Shi Y; Cattarinuzzi E; Pei J; Huang H; Ding W; Yuan G; Migliavacca F
    ACS Biomater Sci Eng; 2018 Nov; 4(11):3864-3873. PubMed ID: 33429615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparative study on the deformation behavior and mechanical properties of new lower extremity arterial stents.
    Feng H; Shi X; Wang T; Wang K; Su J
    Comput Methods Programs Biomed; 2024 Apr; 247():108094. PubMed ID: 38401508
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of Mg alloy tubes for biodegradable stent application.
    Hanada K; Matsuzaki K; Huang X; Chino Y
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4746-50. PubMed ID: 24094183
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A feasibility study of biodegradable magnesium-aluminum-zinc-calcium-manganese (AZXM) alloys for tracheal stent application.
    Wu J; Lee B; Saha P; N Kumta P
    J Biomater Appl; 2019 Mar; 33(8):1080-1093. PubMed ID: 30717611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Research and development strategy for biodegradable magnesium-based vascular stents: a review.
    Niu J; Huang H; Pei J; Jin Z; Guan S; Yuan G
    Biomater Transl; 2021; 2(3):236-247. PubMed ID: 35836652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical investigations of the mechanical properties of braided vascular stents.
    Fu W; Xia Q; Yan R; Qiao A
    Biomed Mater Eng; 2018; 29(1):81-94. PubMed ID: 29254075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical behavior of fully expanded commercially available endovascular coronary stents.
    Tambaca J; Canic S; Kosor M; Fish RD; Paniagua D
    Tex Heart Inst J; 2011; 38(5):491-501. PubMed ID: 22163122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The addition of silver affects the deformation mechanism of a twinning-induced plasticity steel: Potential for thinner degradable stents.
    Loffredo S; Paternoster C; Giguère N; Barucca G; Vedani M; Mantovani D
    Acta Biomater; 2019 Oct; 98():103-113. PubMed ID: 31004841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro and in vivo studies of Mg-30Sc alloys with different phase structure for potential usage within bone.
    Liu J; Lin Y; Bian D; Wang M; Lin Z; Chu X; Li W; Liu Y; Shen Z; Liu Y; Tong Y; Xu Z; Zhang Y; Zheng Y
    Acta Biomater; 2019 Oct; 98():50-66. PubMed ID: 30853611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical design of an intracranial stent for treating cerebral aneurysms.
    Shobayashi Y; Tanoue T; Tateshima S; Tanishita K
    Med Eng Phys; 2010 Nov; 32(9):1015-24. PubMed ID: 20675176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Damage evolution of biodegradable magnesium alloy stent based on configurational forces.
    Wang R; Yuan Z; Li Q; Yang B; Zuo H
    J Biomech; 2021 Jun; 122():110443. PubMed ID: 33933858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-objective optimization of coronary stent using Kriging surrogate model.
    Li H; Gu J; Wang M; Zhao D; Li Z; Qiao A; Zhu B
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):148. PubMed ID: 28155700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.