These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35085905)

  • 1. Monoethanolamine adsorption on oxide surfaces.
    Rose AN; Hettiarachchi E; Grassian VH
    J Colloid Interface Sci; 2022 May; 614():75-83. PubMed ID: 35085905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface complexation of catechol to metal oxides: an ATR-FTIR, adsorption, and dissolution study.
    Gulley-Stahl H; Hogan PA; Schmidt WL; Wall SJ; Buhrlage A; Bullen HA
    Environ Sci Technol; 2010 Jun; 44(11):4116-21. PubMed ID: 20429557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bovine serum albumin adsorption on SiO
    Givens BE; Xu Z; Fiegel J; Grassian VH
    J Colloid Interface Sci; 2017 May; 493():334-341. PubMed ID: 28119244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of humic acid with nanosized inorganic oxides.
    Yang K; Lin D; Xing B
    Langmuir; 2009 Apr; 25(6):3571-6. PubMed ID: 19708146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of pH and ionic strength in the aggregation of TiO
    Lin D; Story SD; Walker SL; Huang Q; Liang W; Cai P
    Environ Pollut; 2017 Sep; 228():35-42. PubMed ID: 28511037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide Adsorption on Iron(III) Oxide Nanoparticle Surfaces: Insights into Nano-Geo-Bio Interactions Through Vibrational Spectroscopy.
    Sit I; Sagisaka S; Grassian VH
    Langmuir; 2020 Dec; 36(51):15501-15513. PubMed ID: 33331787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histidine adsorption on TiO2 nanoparticles: an integrated spectroscopic, thermodynamic, and molecular-based approach toward understanding nano-bio interactions.
    Mudunkotuwa IA; Grassian VH
    Langmuir; 2014 Jul; 30(29):8751-60. PubMed ID: 24978817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The adsorption and reaction of a titanate coupling reagent on the surfaces of different nanoparticles in supercritical CO2.
    Wang ZW; Wang TJ; Wang ZW; Jin Y
    J Colloid Interface Sci; 2006 Dec; 304(1):152-9. PubMed ID: 17005190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-dependent adsorption of α-amino acids, lysine, glutamic acid, serine and glycine, on TiO
    Ustunol IB; Gonzalez-Pech NI; Grassian VH
    J Colloid Interface Sci; 2019 Oct; 554():362-375. PubMed ID: 31306947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attachment of L-glutamate to rutile (alpha-TiO(2)): a potentiometric, adsorption, and surface complexation study.
    Jonsson CM; Jonsson CL; Sverjensky DA; Cleaves HJ; Hazen RM
    Langmuir; 2009 Oct; 25(20):12127-35. PubMed ID: 19821622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined in-situ attenuated total reflection-Fourier transform infrared spectroscopy and single molecule force studies of poly(acrylic acid) at electrolyte/oxide interfaces at acidic pH.
    Neßlinger V; Orive AG; Meinderink D; Grundmeier G
    J Colloid Interface Sci; 2022 Jun; 615():563-576. PubMed ID: 35152076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of serine at the anatase TiO
    Liu J; Zhang F; Dou S; Zhu M; Ding L; Yang Y
    Sci Total Environ; 2022 Feb; 807(Pt 1):150839. PubMed ID: 34627881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles.
    Erhayem M; Sohn M
    Sci Total Environ; 2014 Feb; 470-471():92-8. PubMed ID: 24140685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tungstate (VI) sorption on hematite: An in situ ATR-FTIR probe on the mechanism.
    Rakshit S; Sallman B; Davantés A; Lefèvre G
    Chemosphere; 2017 Feb; 168():685-691. PubMed ID: 27836284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular insights into protein adsorption on hematite surface disclosed by in-situ ATR-FTIR/2D-COS study.
    Barreto MSC; Elzinga EJ; Alleoni LRF
    Sci Rep; 2020 Aug; 10(1):13441. PubMed ID: 32778712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of bovine serum albumin on nano and bulk oxide particles in deionized water.
    Song L; Yang K; Jiang W; Du P; Xing B
    Colloids Surf B Biointerfaces; 2012 Jun; 94():341-6. PubMed ID: 22405471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential Surface Interactions and Surface Templating of Nucleotides (dGMP, dCMP, dAMP, and dTMP) on Oxide Particle Surfaces.
    Sit I; Quirk E; Hettiarachchi E; Grassian VH
    Langmuir; 2022 Dec; 38(49):15038-15049. PubMed ID: 36445255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study on the mechanism of Ca
    Szymanek K; Charmas R; Piasecki W
    Chemosphere; 2020 Mar; 242():125162. PubMed ID: 31896189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.
    Zhu M; Wang H; Keller AA; Wang T; Li F
    Sci Total Environ; 2014 Jul; 487():375-80. PubMed ID: 24793841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATR-FTIR studies on the nature of surface complexes and desorption efficiency of p-arsanilic acid on iron (oxyhydr)oxides.
    Chabot M; Hoang T; Al-Abadleh HA
    Environ Sci Technol; 2009 May; 43(9):3142-7. PubMed ID: 19534126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.