These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35085972)

  • 41. Solid matrix characterization of immobilized Pseudomonas putida MTCC 1194 used for phenol degradation.
    Bandhyopadhyay K; Das D; Maiti BR
    Appl Microbiol Biotechnol; 1999 Jun; 51(6):891-5. PubMed ID: 10422235
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biodegradation of phenol by a highly tolerant strain Rhodococcus ruber C1: Biochemical characterization and comparative genome analysis.
    Zhao T; Gao Y; Yu T; Zhang Y; Zhang Z; Zhang L; Zhang L
    Ecotoxicol Environ Saf; 2021 Jan; 208():111709. PubMed ID: 33396040
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced cyanide biodegradation by immobilized crude extract of Rhodococcus UKMP-5M.
    Maniyam MN; Ibrahim AL; Cass AEG
    Environ Technol; 2019 Jan; 40(3):386-398. PubMed ID: 29032742
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Degradation of pyridine by one Rhodococcus strain in the presence of chromium (VI) or phenol.
    Sun JQ; Xu L; Tang YQ; Chen FM; Liu WQ; Wu XL
    J Hazard Mater; 2011 Jul; 191(1-3):62-8. PubMed ID: 21592659
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12.
    Wang Y; Tian Y; Han B; Zhao HB; Bi JN; Cai BL
    J Environ Sci (China); 2007; 19(2):222-5. PubMed ID: 17915733
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC; Hsieh FM
    J Hazard Mater; 2007 Sep; 148(3):660-70. PubMed ID: 17434262
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Individual or synchronous biodegradation of di-n-butyl phthalate and phenol by Rhodococcus ruber strain DP-2.
    He Z; Niu C; Lu Z
    J Hazard Mater; 2014 May; 273():104-9. PubMed ID: 24727011
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cesium accumulation of Rhodococcus erythropolis CS98 strain immobilized in hydrogel matrices.
    Takei T; Yamasaki M; Yoshida M
    J Biosci Bioeng; 2014 Apr; 117(4):497-500. PubMed ID: 24183457
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced phenol degradation by immobilized Acinetobacter sp. strain AQ5NOL 1.
    Ahmad SA; Shamaan NA; Arif NM; Koon GB; Shukor MY; Syed MA
    World J Microbiol Biotechnol; 2012 Jan; 28(1):347-52. PubMed ID: 22806810
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Statistical Optimisation of Phenol Degradation and Pathway Identification through Whole Genome Sequencing of the Cold-Adapted Antarctic Bacterium,
    Lee GLY; Zakaria NN; Convey P; Futamata H; Zulkharnain A; Suzuki K; Abdul Khalil K; Shaharuddin NA; Alias SA; González-Rocha G; Ahmad SA
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33316871
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biochemical pathways and enhanced degradation of dioctyl phthalate (DEHP) by sodium alginate immobilization in MBR system.
    Zhang K; Wu X; Luo H; Wang W; Yang S; Chen J; Chen W; Chen J; Mo Y; Li L
    Water Sci Technol; 2021 Feb; 83(3):664-677. PubMed ID: 33600370
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Isolation and characterization of phenol-catabolizing bacteria from a coking plant.
    El-Sayed WS; Ibrahim MK; Abu-Shady M; El-Beih F; Ohmura N; Saiki H; Ando A
    Biosci Biotechnol Biochem; 2003 Sep; 67(9):2026-9. PubMed ID: 14519997
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. EH831.
    Lee EH; Kim J; Cho KS; Ahn YG; Hwang GS
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):64-77. PubMed ID: 19756804
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Investigating the effect of electrosprayed alginate/PVA beads size on the microbial growth kinetics: Phenol biodegradation through immobilized activated sludge.
    Partovinia A; Vatankhah E
    Heliyon; 2023 Apr; 9(4):e15538. PubMed ID: 37151691
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isolation and characterization of Indigenous Bacilli strains from an oil refinery wastewater with potential applications for phenol/cresol bioremediation.
    Harzallah B; Grama SB; Bousseboua H; Jouanneau Y; Yang J; Li J
    J Environ Manage; 2023 Apr; 332():117322. PubMed ID: 36724594
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kinetics and metabolic versatility of highly tolerant phenol degrading Alcaligenes strain TW1.
    Essam T; Amin MA; El Tayeb O; Mattiasson B; Guieysse B
    J Hazard Mater; 2010 Jan; 173(1-3):783-8. PubMed ID: 19783362
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biodegradation of phenol by native microorganisms isolated from coke processing wastewater.
    Chakraborty S; Bhattacharya T; Patel TN; Tiwari KK
    J Environ Biol; 2010 May; 31(3):293-6. PubMed ID: 21046999
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biodegradation of crystal violet using Burkholderia vietnamiensis C09V immobilized on PVA-sodium alginate-kaolin gel beads.
    Cheng Y; Lin H; Chen Z; Megharaj M; Naidu R
    Ecotoxicol Environ Saf; 2012 Sep; 83():108-14. PubMed ID: 22789742
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A study of highly efficient phenol biodegradation by a versatile Bacillus cereus ZWB3 on aerobic condition.
    Zhang J; Zhou X; Zhou Q; Zhang J; Liang J
    Water Sci Technol; 2022 Jul; 86(2):355-366. PubMed ID: 35906912
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative genomics reveals response of Rhodococcus pyridinivorans B403 to phenol after evolution.
    Peng F; Ye M; Liu Y; Liu J; Lan Y; Luo A; Zhang T; Jiang Z; Song H
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2751-2761. PubMed ID: 35278114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.