These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35085972)

  • 61. Novel eco-friendly electrospun nanomagnetic zinc oxide hybridized PVA/alginate/chitosan nanofibers for enhanced phenol decontamination.
    Elkady M; Salama E; Amer WA; Ebeid EM; Ayad MM; Shokry H
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):43077-43092. PubMed ID: 32729039
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Study on the degradation performance and kinetics of immobilized cells in straw-alginate beads in marine environment.
    Xue J; Wu Y; Shi K; Xiao X; Gao Y; Li L; Qiao Y
    Bioresour Technol; 2019 May; 280():88-94. PubMed ID: 30763865
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Optimization of laccase-alginate-chitosan-based matrix toward 17 α-ethinylestradiol removal.
    Garcia LF; Lacerda MFAR; Thomaz DV; de Souza Golveia JC; Pereira MDGC; de Souza Gil E; Schimidt F; Santiago MF
    Prep Biochem Biotechnol; 2019; 49(4):375-383. PubMed ID: 30777480
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Enhanced treatment of coking wastewater containing phenol, pyridine, and quinoline by integration of an E-Fenton process into biological treatment.
    Xue L; Liu J; Li M; Tan L; Ji X; Shi S; Jiang B
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9765-9775. PubMed ID: 28251539
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Alginate/bacterial cellulose nanocomposite beads prepared using Gluconacetobacter xylinus and their application in lipase immobilization.
    Kim JH; Park S; Kim H; Kim HJ; Yang YH; Kim YH; Jung SK; Kan E; Lee SH
    Carbohydr Polym; 2017 Feb; 157():137-145. PubMed ID: 27987845
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Modeling the effect of immobilization of microorganisms on the rate of biodegradation of phenol under inhibitory conditions.
    Massalha N; Shaviv A; Sabbah I
    Water Res; 2010 Oct; 44(18):5252-9. PubMed ID: 20615523
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Growth and production of cholesterol oxidase by alginate-immobilized cells of Rhodococcus equi No. 23.
    Chang YC; Chou CC
    Biotechnol Appl Biochem; 2002 Apr; 35(2):69-74. PubMed ID: 11916448
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Studies on the removal of acid violet 7 dye from aqueous solutions by green ZnO@Fe
    Roy N; Alex SA; Chandrasekaran N; Kannabiran K; Mukherjee A
    J Environ Manage; 2022 Feb; 303():114128. PubMed ID: 34823906
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Biodegradation of dimethyl phthalate, diethyl phthalate and di-n-butyl phthalate by Rhodococcus sp. L4 isolated from activated sludge.
    Lu Y; Tang F; Wang Y; Zhao J; Zeng X; Luo Q; Wang L
    J Hazard Mater; 2009 Sep; 168(2-3):938-43. PubMed ID: 19342169
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Phenol degradation by Rhodococcus opacus strain 1G].
    Shumkova ES; Solianikova IP; Plotnikova EG; Golovleva LA
    Prikl Biokhim Mikrobiol; 2009; 45(1):51-7. PubMed ID: 19235509
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Sustainable biodegradation of phenol by immobilized Bacillus sp. SAS19 with porous carbonaceous gels as carriers.
    Ke Q; Zhang Y; Wu X; Su X; Wang Y; Lin H; Mei R; Zhang Y; Hashmi MZ; Chen C; Chen J
    J Environ Manage; 2018 Sep; 222():185-189. PubMed ID: 29843091
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Biodegradation of phenol by immobilized Aspergillus awamori NRRL 3112 on modified polyacrylonitrile membrane.
    Yordanova G; Ivanova D; Godjevargova T; Krastanov A
    Biodegradation; 2009 Sep; 20(5):717-26. PubMed ID: 19340590
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Biodegradation and detoxication of phenol by using free and immobilized cells of Acinetobacter sp. XA05 and Sphingomonas sp. FG03.
    Liu YJ; Nikolausz M; Wang XC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Feb; 44(2):130-6. PubMed ID: 19123092
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Simultaneous removal of phenol, Cu and Cd from water with corn cob silica-alginate beads.
    Shim J; Lim JM; Shea PJ; Oh BT
    J Hazard Mater; 2014 May; 272():129-36. PubMed ID: 24685529
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Synthesis of cross-linked magnetic chitosan beads immobilised with bacteria for aerobic biodegrading benzophenone-type UV filter.
    Lau SH; Lin IC; Su CL; Chang YT; Jane WN
    Chemosphere; 2022 Nov; 307(Pt 3):136010. PubMed ID: 35973493
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Isolation and growth kinetics of a novel phenol-degrading bacterium Microbacterium oxydans from the sediment of Taihu Lake (China).
    Wang L; Li Y; Niu L; Dai Y; Wu Y; Wang Q
    Water Sci Technol; 2016; 73(8):1882-90. PubMed ID: 27120643
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Preparation and Biochemical Property of Penicillin G Amidase-Loaded Alginate and Alginate/Chitosan Hydrogel Beads.
    Nupur N; Ashish EY; Debnath M
    Recent Pat Biotechnol; 2016; 10(1):121-132. PubMed ID: 27494735
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Phenol degradation by immobilized cells of Arthrobacter citreus.
    Karigar C; Mahesh A; Nagenahalli M; Yun DJ
    Biodegradation; 2006 Feb; 17(1):47-55. PubMed ID: 16453171
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effective immobilization of Bacillus subtilis in chitosan-sodium alginate composite carrier for ammonia removal from anaerobically digested swine wastewater.
    Guo J; Chen C; Chen W; Jiang J; Chen B; Zheng F
    Chemosphere; 2021 Dec; 284():131266. PubMed ID: 34175512
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Biodegradation of phenol by free and immobilized cells of Pseudomonas putida.
    González BG; Herrera TG
    Acta Microbiol Pol; 1995; 44(3-4):285-296. PubMed ID: 8934668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.