These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35086335)

  • 1. Uneven Oxidation and Surface Reconstructions on Stepped Cu(100) and Cu(110).
    Li M; Curnan MT; Saidi WA; Yang JC
    Nano Lett; 2022 Feb; 22(3):1075-1082. PubMed ID: 35086335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Step-edge-induced oxide growth during the oxidation of Cu surfaces.
    Zhou G; Luo L; Li L; Ciston J; Stach EA; Yang JC
    Phys Rev Lett; 2012 Dec; 109(23):235502. PubMed ID: 23368225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Reconstruction and Oxide Nucleation Due to Oxygen Interaction with Cu(001) Observed by In Situ Ultra-High Vacuum Transmission Electron Microscopy.
    Yang JC; Yeadon M; Kolasa B; Gibson JM
    Microsc Microanal; 1998 May; 4(3):334-339. PubMed ID: 9767671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculations of oxide formation on low-index Cu surfaces.
    Lian X; Xiao P; Yang SC; Liu R; Henkelman G
    J Chem Phys; 2016 Jul; 145(4):044711. PubMed ID: 27475390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen adsorption-induced nanostructures and island formation on Cu{100}: Bridging the gap between the formation of surface confined oxygen chemisorption layer and oxide formation.
    Lahtonen K; Hirsimäki M; Lampimäki M; Valden M
    J Chem Phys; 2008 Sep; 129(12):124703. PubMed ID: 19045044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale oxidation of Cu100: oxide morphology and surface reactivity.
    Lampimäki M; Lahtonen K; Hirsimäki M; Valden M
    J Chem Phys; 2007 Jan; 126(3):034703. PubMed ID: 17249892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic hindrance during the surface oxidation of Cu(100)-c(10x2)-Ag.
    Lahtonen K; Lampimäki M; Hirsimäki M; Valden M
    J Chem Phys; 2008 Nov; 129(19):194707. PubMed ID: 19026081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Step-Edge Directed Metal Oxidation.
    Zhu Q; Saidi WA; Yang JC
    J Phys Chem Lett; 2016 Jul; 7(13):2530-6. PubMed ID: 27299380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-step-induced oscillatory oxide growth.
    Li L; Luo L; Ciston J; Saidi WA; Stach EA; Yang JC; Zhou G
    Phys Rev Lett; 2014 Sep; 113(13):136104. PubMed ID: 25302908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flat-surface-assisted and self-regulated oxidation resistance of Cu(111).
    Kim SJ; Kim YI; Lamichhane B; Kim YH; Lee Y; Cho CR; Cheon M; Kim JC; Jeong HY; Ha T; Kim J; Lee YH; Kim SG; Kim YM; Jeong SY
    Nature; 2022 Mar; 603(7901):434-438. PubMed ID: 35296844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation on a stepped surface with an Ehrlich-Schwöbel barrier.
    Chromcova Z; Tringides MC; Chvoj Z
    J Phys Condens Matter; 2013 Jul; 25(26):265003. PubMed ID: 23733080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateral ordering of PTCDA on the clean and the oxygen pre-covered Cu(100) surface investigated by scanning tunneling microscopy and low energy electron diffraction.
    Gärtner S; Fiedler B; Bauer O; Marele A; Sokolowski MM
    Beilstein J Org Chem; 2014; 10():2055-64. PubMed ID: 25246964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of step geometry in copper oxidation by hyperthermal O2 molecular beam: Cu(511) vs Cu(410).
    Okada M; Vattuone L; Rocca M; Teraoka Y
    J Chem Phys; 2012 Mar; 136(9):094704. PubMed ID: 22401465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic-Scale Insights into the Oxidation of Aluminum.
    Nguyen L; Hashimoto T; Zakharov DN; Stach EA; Rooney AP; Berkels B; Thompson GE; Haigh SJ; Burnett TL
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2230-2235. PubMed ID: 29319290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communication: Calculations of the (2 × 1)-O reconstruction kinetics on Cu(110).
    Lian X; Xiao P; Liu R; Henkelman G
    J Chem Phys; 2017 Mar; 146(11):111101. PubMed ID: 28330350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of steps on the Cu(111) surface induced by sulfur.
    Walen H; Liu DJ; Oh J; Lim H; Evans JW; Kim Y; Thiel PA
    J Chem Phys; 2015 May; 142(19):194711. PubMed ID: 26001477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite.
    Li Y; Kawashima N; Li J; Chandra AP; Gerson AR
    Adv Colloid Interface Sci; 2013 Sep; 197-198():1-32. PubMed ID: 23791420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Halide-induced Step Faceting and Dissolution Energetics from Atomistic Machine Learned Potentials on Cu(100).
    Groenenboom MC; Moffat TP; Schwarz KA
    J Phys Chem C Nanomater Interfaces; 2020; 124(23):. PubMed ID: 34194601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ ultra-high vacuum transmission electron microscopy studies of the transient oxidation stage of Cu and Cu alloy thin films.
    Yang JC; Zhou G
    Micron; 2012 Nov; 43(11):1195-210. PubMed ID: 22537718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.