BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35086846)

  • 1. In Vitro and In Vivo Metabolism of a Novel Antimitochondrial Cancer Metabolism Agent, CPI-613, in Rat and Human.
    Reddy VB; Boteju L; Boteju A; Shen L; Kassahun K; Reddy N; Sheldon A; Luther S; Hu K
    Drug Metab Dispos; 2022 Apr; 50(4):361-373. PubMed ID: 35086846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and anti-tumor activity of uncommon in vitro and in vivo metabolites of CPI-613, a novel anti-tumor compound that selectively alters tumor energy metabolism.
    Lee KC; Shorr R; Rodriguez R; Maturo C; Boteju LW; Sheldon A
    Drug Metab Lett; 2011 Aug; 5(3):163-82. PubMed ID: 21722089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excretion, Mass Balance, and Metabolism of [
    Katyayan K; Yi P; Monk S; Cassidy K
    Drug Metab Dispos; 2020 Aug; 48(8):698-707. PubMed ID: 32499340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systemic Exposure, Metabolism, and Elimination of [
    Burdette D; Ci L; Shilliday B; Slauter R; Auerbach A; Kenney M; Almarsson Ö; Cheung E; Hendrick T
    Drug Metab Dispos; 2023 Jul; 51(7):804-812. PubMed ID: 37208185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo.
    Zachar Z; Marecek J; Maturo C; Gupta S; Stuart SD; Howell K; Schauble A; Lem J; Piramzadian A; Karnik S; Lee K; Rodriguez R; Shorr R; Bingham PM
    J Mol Med (Berl); 2011 Nov; 89(11):1137-48. PubMed ID: 21769686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative metabolism of 14C-labeled apixaban in mice, rats, rabbits, dogs, and humans.
    Zhang D; He K; Raghavan N; Wang L; Mitroka J; Maxwell BD; Knabb RM; Frost C; Schuster A; Hao F; Gu Z; Humphreys WG; Grossman SJ
    Drug Metab Dispos; 2009 Aug; 37(8):1738-48. PubMed ID: 19420130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated in vivo and in silico analysis of the metabolism disrupting effects of CPI-613 on embryo-larval zebrafish (Danio rerio).
    Hala D; Faulkner P; He K; Kamalanathan M; Brink M; Simons K; Apaydin M; Hernout B; Petersen LH; Ivanov I; Qian X
    Comp Biochem Physiol C Toxicol Pharmacol; 2021 Oct; 248():109084. PubMed ID: 34051378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of cryptolepine metabolites in rat and human hepatocytes and metabolism and pharmacokinetics of cryptolepine in Sprague Dawley rats.
    Forkuo AD; Ansah C; Pearson D; Gertsch W; Cirello A; Amaral A; Spear J; Wright CW; Rynn C
    BMC Pharmacol Toxicol; 2017 Dec; 18(1):84. PubMed ID: 29273084
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Wan D; Yang J; McReynolds CB; Barnych B; Wagner KM; Morisseau C; Hwang SH; Sun J; Blöcher R; Hammock BD
    Front Pharmacol; 2019; 10():464. PubMed ID: 31143115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective inactivation of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal.
    Humphries KM; Szweda LI
    Biochemistry; 1998 Nov; 37(45):15835-41. PubMed ID: 9843389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative metabolism of radiolabeled muraglitazar in animals and humans by quantitative and qualitative metabolite profiling.
    Zhang D; Wang L; Raghavan N; Zhang H; Li W; Cheng PT; Yao M; Zhang L; Zhu M; Bonacorsi S; Yeola S; Mitroka J; Hariharan N; Hosagrahara V; Chandrasena G; Shyu WC; Humphreys WG
    Drug Metab Dispos; 2007 Jan; 35(1):150-67. PubMed ID: 17062777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma kinetics, metabolism, and urinary excretion of alpha-lipoic acid following oral administration in healthy volunteers.
    Teichert J; Hermann R; Ruus P; Preiss R
    J Clin Pharmacol; 2003 Nov; 43(11):1257-67. PubMed ID: 14551180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A phase I study of the first-in-class antimitochondrial metabolism agent, CPI-613, in patients with advanced hematologic malignancies.
    Pardee TS; Lee K; Luddy J; Maturo C; Rodriguez R; Isom S; Miller LD; Stadelman KM; Levitan D; Hurd D; Ellis LR; Harrelson R; Manuel M; Dralle S; Lyerly S; Powell BL
    Clin Cancer Res; 2014 Oct; 20(20):5255-64. PubMed ID: 25165100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of R(+)alpha-lipoic acid on pyruvate metabolism and fatty acid oxidation in rat hepatocytes.
    Walgren JL; Amani Z; McMillan JM; Locher M; Buse MG
    Metabolism; 2004 Feb; 53(2):165-73. PubMed ID: 14767867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism and Disposition of Pacritinib (SB1518), an Orally Active Janus Kinase 2 Inhibitor in Preclinical Species and Humans.
    Jayaraman R; Pasha MK; Williams A; Goh KC; Ethirajulu K
    Drug Metab Lett; 2015; 9(1):28-47. PubMed ID: 25600203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism and bioactivation of famitinib, a novel inhibitor of receptor tyrosine kinase, in cancer patients.
    Xie C; Zhou J; Guo Z; Diao X; Gao Z; Zhong D; Jiang H; Zhang L; Chen X
    Br J Pharmacol; 2013 Apr; 168(7):1687-706. PubMed ID: 23126373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reductive isoxazole ring opening of the anticoagulant razaxaban is the major metabolic clearance pathway in rats and dogs.
    Zhang D; Raghavan N; Chen SY; Zhang H; Quan M; Lecureux L; Patrone LM; Lam PY; Bonacorsi SJ; Knabb RM; Skiles GL; He K
    Drug Metab Dispos; 2008 Feb; 36(2):303-15. PubMed ID: 17984286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A strategically designed small molecule attacks alpha-ketoglutarate dehydrogenase in tumor cells through a redox process.
    Stuart SD; Schauble A; Gupta S; Kennedy AD; Keppler BR; Bingham PM; Zachar Z
    Cancer Metab; 2014 Mar; 2(1):4. PubMed ID: 24612826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro and in vivo metabolism of a selective δ-opioid receptor.
    Guo J; Gu C; Zhou D; Elmore CS; Bui KH; Grimm SW
    Drug Metab Dispos; 2011 Oct; 39(10):1883-94. PubMed ID: 21752944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative demethylenation and subsequent glucuronidation are the major metabolic pathways of berberine in rats.
    Liu Y; Hao H; Xie H; Lv H; Liu C; Wang G
    J Pharm Sci; 2009 Nov; 98(11):4391-401. PubMed ID: 19283771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.