These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease. Khosravi MA; Abbasalipour M; Concordet JP; Berg JV; Zeinali S; Arashkia A; Azadmanesh K; Buch T; Karimipoor M Eur J Pharmacol; 2019 Jul; 854():398-405. PubMed ID: 31039344 [TBL] [Abstract][Full Text] [Related]
7. A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease. Cai L; Bai H; Mahairaki V; Gao Y; He C; Wen Y; Jin YC; Wang Y; Pan RL; Qasba A; Ye Z; Cheng L Stem Cells Transl Med; 2018 Jan; 7(1):87-97. PubMed ID: 29164808 [TBL] [Abstract][Full Text] [Related]
8. Disruption of SOX6 gene using CRISPR/Cas9 technology for gamma-globin reactivation: An approach towards gene therapy of β-thalassemia. Shariati L; Rohani F; Heidari Hafshejani N; Kouhpayeh S; Boshtam M; Mirian M; Rahimmanesh I; Hejazi Z; Modarres M; Pieper IL; Khanahmad H J Cell Biochem; 2018 Nov; 119(11):9357-9363. PubMed ID: 30010219 [TBL] [Abstract][Full Text] [Related]
9. Optimization of CRISPR/Cas9 Delivery to Human Hematopoietic Stem and Progenitor Cells for Therapeutic Genomic Rearrangements. Lattanzi A; Meneghini V; Pavani G; Amor F; Ramadier S; Felix T; Antoniani C; Masson C; Alibeu O; Lee C; Porteus MH; Bao G; Amendola M; Mavilio F; Miccio A Mol Ther; 2019 Jan; 27(1):137-150. PubMed ID: 30424953 [TBL] [Abstract][Full Text] [Related]
10. In vivo base editing by a single i.v. vector injection for treatment of hemoglobinopathies. Li C; Georgakopoulou A; Newby GA; Everette KA; Nizamis E; Paschoudi K; Vlachaki E; Gil S; Anderson AK; Koob T; Huang L; Wang H; Kiem HP; Liu DR; Yannaki E; Lieber A JCI Insight; 2022 Oct; 7(19):. PubMed ID: 36006707 [TBL] [Abstract][Full Text] [Related]
11. Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding. Martyn GE; Wienert B; Yang L; Shah M; Norton LJ; Burdach J; Kurita R; Nakamura Y; Pearson RCM; Funnell APW; Quinlan KGR; Crossley M Nat Genet; 2018 Apr; 50(4):498-503. PubMed ID: 29610478 [TBL] [Abstract][Full Text] [Related]
12. Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal hemoglobin. Ravi NS; Wienert B; Wyman SK; Bell HW; George A; Mahalingam G; Vu JT; Prasad K; Bandlamudi BP; Devaraju N; Rajendiran V; Syedbasha N; Pai AA; Nakamura Y; Kurita R; Narayanasamy M; Balasubramanian P; Thangavel S; Marepally S; Velayudhan SR; Srivastava A; DeWitt MA; Crossley M; Corn JE; Mohankumar KM Elife; 2022 Feb; 11():. PubMed ID: 35147495 [TBL] [Abstract][Full Text] [Related]
13. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. Frangoul H; Altshuler D; Cappellini MD; Chen YS; Domm J; Eustace BK; Foell J; de la Fuente J; Grupp S; Handgretinger R; Ho TW; Kattamis A; Kernytsky A; Lekstrom-Himes J; Li AM; Locatelli F; Mapara MY; de Montalembert M; Rondelli D; Sharma A; Sheth S; Soni S; Steinberg MH; Wall D; Yen A; Corbacioglu S N Engl J Med; 2021 Jan; 384(3):252-260. PubMed ID: 33283989 [TBL] [Abstract][Full Text] [Related]
14. Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. Weber L; Frati G; Felix T; Hardouin G; Casini A; Wollenschlaeger C; Meneghini V; Masson C; De Cian A; Chalumeau A; Mavilio F; Amendola M; Andre-Schmutz I; Cereseto A; El Nemer W; Concordet JP; Giovannangeli C; Cavazzana M; Miccio A Sci Adv; 2020 Feb; 6(7):. PubMed ID: 32917636 [TBL] [Abstract][Full Text] [Related]
15. Tweaking genes with CRISPR or viruses fixes blood disorders. Kaiser J Science; 2020 Dec; 370(6522):1254-1255. PubMed ID: 33303593 [No Abstract] [Full Text] [Related]
16. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia. Ye L; Wang J; Tan Y; Beyer AI; Xie F; Muench MO; Kan YW Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10661-5. PubMed ID: 27601644 [TBL] [Abstract][Full Text] [Related]
17. CTD small phosphatase like 2 (CTDSPL2) can increase ε- and γ-globin gene expression in K562 cells and CD34+ cells derived from umbilical cord blood. Ma YN; Zhang X; Yu HC; Zhang JW BMC Cell Biol; 2010 Oct; 11():75. PubMed ID: 20932329 [TBL] [Abstract][Full Text] [Related]