These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35087312)

  • 1. Efficient
    Muto N; Komatsu K; Matsumoto T
    Plant Biotechnol (Tokyo); 2021 Dec; 38(4):457-461. PubMed ID: 35087312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of radish (Raphanus sativus L.) via sonication and vacuum infiltration of germinated seeds with Agrobacterium harboring a group 3 LEA gene from B. napus.
    Park BJ; Liu Z; Kanno A; Kameya T
    Plant Cell Rep; 2005 Oct; 24(8):494-500. PubMed ID: 15843933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-mediated genome editing of
    Muto N; Matsumoto T
    Front Plant Sci; 2022; 13():951660. PubMed ID: 36311091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving
    Liu H; Zhao J; Chen F; Wu Z; Tan J; Nguyen NH; Cheng Z; Weng Y
    Genes (Basel); 2023 Feb; 14(3):. PubMed ID: 36980873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agrobacterium-mediated genetic transformation of Perilla frutescens.
    Kim KH; Lee YH; Kim D; Park YH; Lee JY; Hwang YS; Kim YH
    Plant Cell Rep; 2004 Nov; 23(6):386-90. PubMed ID: 15368075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method--plant development and surfactant are important in optimizing transformation efficiency.
    Curtis IS; Nam HG
    Transgenic Res; 2001 Aug; 10(4):363-71. PubMed ID: 11592715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of cucumber (Cucumis sativus L.) plants using Agrobacterium tumefaciens and regeneration from hypocotyl explants.
    Nishibayashi S; Kaneko H; Hayakawa T
    Plant Cell Rep; 1996 Aug; 15(11):809-14. PubMed ID: 24178213
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Nuoendagula ; Narushima M; Uesugi M; Murai Y; Katayama Y; Iimura Y; Kajita S
    Plant Biotechnol (Tokyo); 2017; 34(2):125-129. PubMed ID: 31275018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L-Cysteine Increases the Transformation Efficiency of Chinese Cabbage (
    Sivanandhan G; Moon J; Sung C; Bae S; Yang ZH; Jeong SY; Choi SR; Kim SG; Lim YP
    Front Plant Sci; 2021; 12():767140. PubMed ID: 34764973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel in vitro transformation of
    Zinhari Z; Pourseyedi S; Zolalo J
    3 Biotech; 2017 Oct; 7(5):284. PubMed ID: 28828291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of in vitro regeneration and Agrobacterium tumefaciens-mediated transformation with heat-resistant cDNA in Brassica oleracea subsp. italica cv. Green Marvel.
    Ravanfar SA; Aziz MA; Saud HM; Abdullah JO
    Curr Genet; 2015 Nov; 61(4):653-63. PubMed ID: 25986972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of genetic transformation of Artemisia annua L. Using Agrobacterium for Artemisinin production.
    Elfahmi ; Suhandono S; Chahyadi A
    Pharmacogn Mag; 2014 Jan; 10(Suppl 1):S176-80. PubMed ID: 24914301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agrobacterium-mediated transformation of Fraxinus pennsylvanica hypocotyls and plant regeneration.
    Du N; Pijut PM
    Plant Cell Rep; 2009 Jun; 28(6):915-23. PubMed ID: 19343350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of a novel cytoplasmic male-sterility and its restorer lines in radish (Raphanus sativus L.).
    Lee YP; Park S; Lim C; Kim H; Lim H; Ahn Y; Sung SK; Yoon MK; Kim S
    Theor Appl Genet; 2008 Oct; 117(6):905-13. PubMed ID: 18597066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciens.
    Tang W; Sederoff R; Whetten R
    Planta; 2001 Oct; 213(6):981-9. PubMed ID: 11722135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient genetic transformation of Withania coagulans (Stocks) Dunal mediated by Agrobacterium tumefaciens from leaf explants of in vitro multiple shoot culture.
    Mishra S; Sangwan RS; Bansal S; Sangwan NS
    Protoplasma; 2013 Apr; 250(2):451-8. PubMed ID: 22766977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumefaciens.
    Cheng M; Jarret RL; Li Z; Xing A; Demski JW
    Plant Cell Rep; 1996 May; 15(9):653-7. PubMed ID: 24178604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic transformation of Brassica nigra by agrobacterium based vector and direct plasmid uptake.
    Gupta V; Lakshmi Sita G; Shaila MS; Jagannathan V
    Plant Cell Rep; 1993 May; 12(7-8):418-21. PubMed ID: 24197344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agrobacterium tumefaciens-mediated transformation of eggplant (Solanum melongena L.) using root explants.
    Franklin G; Lakshmi Sita G
    Plant Cell Rep; 2003 Feb; 21(6):549-54. PubMed ID: 12789429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene transfer in plants of Brassica juncea using Agrobacterium tumefaciens-mediated transformation.
    Barfield DG; Pua EC
    Plant Cell Rep; 1991 Sep; 10(6-7):308-14. PubMed ID: 24221663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.