These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 35087482)
21. Recognising the role of ruderal species in restoration of degraded lands. Ranđelović D; Jakovljević K; Šinžar-Sekulić J; Kuzmič F; Šilc U Sci Total Environ; 2024 Aug; 938():173104. PubMed ID: 38729357 [TBL] [Abstract][Full Text] [Related]
22. Natural revegetation of a semiarid habitat alters taxonomic and functional diversity of soil microbial communities. Guo Y; Chen X; Wu Y; Zhang L; Cheng J; Wei G; Lin Y Sci Total Environ; 2018 Sep; 635():598-606. PubMed ID: 29679832 [TBL] [Abstract][Full Text] [Related]
23. Plant Traits Guide Species Selection in Vegetation Restoration for Soil and Water Conservation. Fu D; Wu X; Hu L; Ma X; Shen C; Shang H; Huang G; He Y; Duan C Biology (Basel); 2023 Apr; 12(4):. PubMed ID: 37106818 [TBL] [Abstract][Full Text] [Related]
24. Plant-soil feedbacks provide an additional explanation for diversity-productivity relationships. Kulmatiski A; Beard KH; Heavilin J Proc Biol Sci; 2012 Aug; 279(1740):3020-6. PubMed ID: 22496190 [TBL] [Abstract][Full Text] [Related]
25. Vegetative growth drives the negative effects of an invasive species on resident community diversity and is not limited by plant-soil feedbacks: A temporal assessment. Holden EM; Salimbayeva K; Brown C; Stotz GC; Cahill JF Ecol Evol; 2024 Jul; 14(7):e70070. PubMed ID: 39041020 [TBL] [Abstract][Full Text] [Related]
26. Are we restoring functional fens? - The outcomes of restoration projects in fens re-analysed with plant functional traits. Klimkowska A; Goldstein K; Wyszomirski T; Kozub Ł; Wilk M; Aggenbach C; Bakker JP; Belting H; Beltman B; Blüml V; De Vries Y; Geiger-Udod B; Grootjans AP; Hedberg P; Jager HJ; Kerkhof D; Kollmann J; Pawlikowski P; Pleyl E; Reinink W; Rydin H; Schrautzer J; Sliva J; Stańko R; Sundberg S; Timmermann T; Wołejko L; van der Burg RF; van der Hoek D; van Diggelen JMH; van Heerden A; van Tweel L; Vegelin K; Kotowski W PLoS One; 2019; 14(4):e0215645. PubMed ID: 31017976 [TBL] [Abstract][Full Text] [Related]
27. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Wong MH Chemosphere; 2003 Feb; 50(6):775-80. PubMed ID: 12688490 [TBL] [Abstract][Full Text] [Related]
28. Soil microbiota as game-changers in restoration of degraded lands. Coban O; De Deyn GB; van der Ploeg M Science; 2022 Mar; 375(6584):abe0725. PubMed ID: 35239372 [TBL] [Abstract][Full Text] [Related]
29. Microbial Inoculants Drive Changes in Soil and Plant Microbiomes and Improve Plant Functions in Abandoned Mine Restoration. Li C; Sun L; Jia Z; Tang Y; Liu X; Zhang J; Müller C Plant Cell Environ; 2024 Oct; ():. PubMed ID: 39420635 [TBL] [Abstract][Full Text] [Related]
30. Vegetation drives the structure of active microbial communities on an acidogenic mine tailings deposit. Gagnon V; Rodrigue-Morin M; Tremblay J; Wasserscheid J; Champagne J; Bellenger JP; Greer CW; Roy S PeerJ; 2020; 8():e10109. PubMed ID: 33150067 [TBL] [Abstract][Full Text] [Related]
31. No robust multispecies coexistence in a canonical model of plant-soil feedbacks. Miller ZR; Lechón-Alonso P; Allesina S Ecol Lett; 2022 Jul; 25(7):1690-1698. PubMed ID: 35635769 [TBL] [Abstract][Full Text] [Related]
32. Competition and soil resource environment alter plant-soil feedbacks for native and exotic grasses. Larios L; Suding KN AoB Plants; 2014 Nov; 7():. PubMed ID: 25425557 [TBL] [Abstract][Full Text] [Related]
33. Young calcareous soil chronosequences as a model for ecological restoration on alkaline mine tailings. Cross AT; Lambers H Sci Total Environ; 2017 Dec; 607-608():168-175. PubMed ID: 28689121 [TBL] [Abstract][Full Text] [Related]
34. Selection of native plants with phytoremediation potential for highly contaminated Mediterranean soil restoration: Tools for a non-destructive and integrative approach. Heckenroth A; Rabier J; Dutoit T; Torre F; Prudent P; Laffont-Schwob I J Environ Manage; 2016 Dec; 183(Pt 3):850-863. PubMed ID: 27665125 [TBL] [Abstract][Full Text] [Related]
35. Effects of Re-vegetation on Herbaceous Species Composition and Biological Soil Crusts Development in a Coal Mine Dumping Site. Zhao Y; Zhang P; Hu Y; Huang L Environ Manage; 2016 Feb; 57(2):298-307. PubMed ID: 26350683 [TBL] [Abstract][Full Text] [Related]
36. Initiating pedogenesis of magnetite tailings using Lupinus angustifolius (narrow-leaf lupin) as an ecological engineer to promote native plant establishment. Zhong H; Lambers H; Wong WS; Dixon KW; Stevens JC; Cross AT Sci Total Environ; 2021 Sep; 788():147622. PubMed ID: 34034171 [TBL] [Abstract][Full Text] [Related]
37. Developing restoration planting mixes for active ski slopes: a multi-site reference community approach. Burt JW Environ Manage; 2012 Mar; 49(3):636-48. PubMed ID: 22245855 [TBL] [Abstract][Full Text] [Related]
38. Soil bacterial community responses to revegetation of moving sand dune in semi-arid grassland. Cao C; Zhang Y; Cui Z; Feng S; Wang T; Ren Q Appl Microbiol Biotechnol; 2017 Aug; 101(15):6217-6228. PubMed ID: 28567480 [TBL] [Abstract][Full Text] [Related]
39. Diamonds in the rough: Dryland microorganisms are ecological engineers to restore degraded land and mitigate desertification. Marasco R; Ramond JB; Van Goethem MW; Rossi F; Daffonchio D Microb Biotechnol; 2023 Aug; 16(8):1603-1610. PubMed ID: 36641786 [TBL] [Abstract][Full Text] [Related]
40. Environmental effect of vegetation restoration on degraded ecosystem in low subtropical China. Peng SL; Yang LC; Lu HF J Environ Sci (China); 2003 Jul; 15(4):514-9. PubMed ID: 12974314 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]