BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35087620)

  • 1. Clinical Relevance and Tumor Growth Suppression of Mitochondrial ROS Regulators along NADH:Ubiquinone Oxidoreductase Subunit B3 in Thyroid Cancer.
    Zhu J; Zheng X; Lu D; Zheng Y; Liu J
    Oxid Med Cell Longev; 2022; 2022():8038857. PubMed ID: 35087620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hepatocellular carcinoma cells downregulate NADH:Ubiquinone Oxidoreductase Subunit B3 to maintain reactive oxygen species homeostasis.
    Zhang Z; Zhao Q; Wang Z; Xu F; Liu Y; Guo Y; Li C; Liu T; Zhao Y; Tang X; Zhang J
    Hepatol Commun; 2024 Mar; 8(3):. PubMed ID: 38437062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial ROS and involvement of Bcl-2 as a mitochondrial ROS regulator.
    Chong SJ; Low IC; Pervaiz S
    Mitochondrion; 2014 Nov; 19 Pt A():39-48. PubMed ID: 24954615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchronism in mitochondrial ROS flashes, membrane depolarization and calcium sparks in human carcinoma cells.
    Kuznetsov AV; Javadov S; Saks V; Margreiter R; Grimm M
    Biochim Biophys Acta Bioenerg; 2017 Jun; 1858(6):418-431. PubMed ID: 28279675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NOX4-derived ROS-induced overexpression of FOXM1 regulates aerobic glycolysis in glioblastoma.
    Su X; Yang Y; Yang Q; Pang B; Sun S; Wang Y; Qiao Q; Guo C; Liu H; Pang Q
    BMC Cancer; 2021 Nov; 21(1):1181. PubMed ID: 34740322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening.
    Orr AL; Ashok D; Sarantos MR; Shi T; Hughes RE; Brand MD
    Free Radic Biol Med; 2013 Dec; 65():1047-1059. PubMed ID: 23994103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of protein kinase C in metabolic regulation of the cardiac Na
    Liu M; Shi G; Yang KC; Gu L; Kanthasamy AG; Anantharam V; Dudley SC
    Heart Rhythm; 2017 Mar; 14(3):440-447. PubMed ID: 27989687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of hydrophilic ubiquinones by the flavin in mitochondrial NADH:ubiquinone oxidoreductase (Complex I) and production of reactive oxygen species.
    King MS; Sharpley MS; Hirst J
    Biochemistry; 2009 Mar; 48(9):2053-62. PubMed ID: 19220002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro characterization of mitochondrial function and structure in rat and human cells with a deficiency of the NADH: ubiquinone oxidoreductase Ndufc2 subunit.
    Raffa S; Scrofani C; Valente S; Micaloni A; Forte M; Bianchi F; Coluccia R; Geurts AM; Sciarretta S; Volpe M; Torrisi MR; Rubattu S
    Hum Mol Genet; 2017 Dec; 26(23):4541-4555. PubMed ID: 28973657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of decidua in patients with recurrent pregnancy loss (RPL) reveals mitochondrial oxidative stress dysfunction.
    Yin XJ; Hong W; Tian FJ; Li XC
    Clin Proteomics; 2021 Feb; 18(1):9. PubMed ID: 33618676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of TFAM or twinkle increases mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress.
    Ikeda M; Ide T; Fujino T; Arai S; Saku K; Kakino T; Tyynismaa H; Yamasaki T; Yamada K; Kang D; Suomalainen A; Sunagawa K
    PLoS One; 2015; 10(3):e0119687. PubMed ID: 25822152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unravelling the relationship between macroautophagy and mitochondrial ROS in cancer therapy.
    Zhao Y; Qu T; Wang P; Li X; Qiang J; Xia Z; Duan H; Huang J; Zhu L
    Apoptosis; 2016 May; 21(5):517-31. PubMed ID: 27007273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new insight into the molecular hydrogen effect on coenzyme Q and mitochondrial function of rats.
    Gvozdjáková A; Kucharská J; Kura B; Vančová O; Rausová Z; Sumbalová Z; Uličná O; Slezák J
    Can J Physiol Pharmacol; 2020 Jan; 98(1):29-34. PubMed ID: 31536712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica.
    Galkin A; Brandt U
    J Biol Chem; 2005 Aug; 280(34):30129-35. PubMed ID: 15985426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ubiquinone (coenzyme q10) and mitochondria in oxidative stress of parkinson's disease.
    Ebadi M; Govitrapong P; Sharma S; Muralikrishnan D; Shavali S; Pellett L; Schafer R; Albano C; Eken J
    Biol Signals Recept; 2001; 10(3-4):224-53. PubMed ID: 11351130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanism and physiological role of active-deactive transition of mitochondrial complex I.
    Babot M; Galkin A
    Biochem Soc Trans; 2013 Oct; 41(5):1325-30. PubMed ID: 24059527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of NADH: ubiquinone reductase (complex I) in Neurospora mitochondria. Independent pathways of nuclear-encoded and mitochondrially encoded subunits.
    Tuschen G; Sackmann U; Nehls U; Haiker H; Buse G; Weiss H
    J Mol Biol; 1990 Jun; 213(4):845-57. PubMed ID: 2141652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PHB2 promotes colorectal cancer cell proliferation and tumorigenesis through NDUFS1-mediated oxidative phosphorylation.
    Ren L; Meng L; Gao J; Lu M; Guo C; Li Y; Rong Z; Ye Y
    Cell Death Dis; 2023 Jan; 14(1):44. PubMed ID: 36658121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.
    Korge P; Calmettes G; John SA; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9882-9895. PubMed ID: 28450391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.