BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35087865)

  • 1. A Minireview of Microfluidic Scaffold Materials in Tissue Engineering.
    Tong A; Voronov R
    Front Mol Biosci; 2021; 8():783268. PubMed ID: 35087865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Addressable Microfluidic Device for Minimally Disruptive Manipulation of Cells and Fluids within Living Cultures.
    Tong A; Pham QL; Shah V; Naik A; Abatemarco P; Voronov R
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1809-1820. PubMed ID: 33455370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants.
    Guerra AJ; Lara-Padilla H; Becker ML; Rodriguez CA; Dean D
    Curr Drug Targets; 2019; 20(8):823-838. PubMed ID: 30648506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching.
    Mohanty S; Sanger K; Heiskanen A; Trifol J; Szabo P; Dufva M; Emnéus J; Wolff A
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():180-9. PubMed ID: 26838839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid manufacturing techniques for the tissue engineering of human heart valves.
    Lueders C; Jastram B; Hetzer R; Schwandt H
    Eur J Cardiothorac Surg; 2014 Oct; 46(4):593-601. PubMed ID: 25063052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional biomaterial degradation - Material choice, design and extrinsic factor considerations.
    Yildirimer L; Seifalian AM
    Biotechnol Adv; 2014; 32(5):984-99. PubMed ID: 24858478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4D printing of self-folding and cell-encapsulating 3D microstructures as scaffolds for tissue-engineering applications.
    Cui C; Kim DO; Pack MY; Han B; Han L; Sun Y; Han LH
    Biofabrication; 2020 Aug; 12(4):045018. PubMed ID: 32650325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces.
    Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M
    Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular microporous hydrogels formed from microgel beads with orthogonal thermo-chemical responsivity: Microfluidic fabrication and characterization.
    Sheikhi A; de Rutte J; Haghniaz R; Akouissi O; Sohrabi A; Di Carlo D; Khademhosseini A
    MethodsX; 2019; 6():1747-1752. PubMed ID: 31413947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Fabrication of Polymeric Scaffolds for Regenerative Therapy.
    Ratheesh G; Venugopal JR; Chinappan A; Ezhilarasu H; Sadiq A; Ramakrishna S
    ACS Biomater Sci Eng; 2017 Jul; 3(7):1175-1194. PubMed ID: 33440508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds.
    Sachlos E; Czernuszka JT
    Eur Cell Mater; 2003 Jun; 5():29-39; discussion 39-40. PubMed ID: 14562270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in the Fabrication of Scaffold and 3D Printing of Biomimetic Bone Graft.
    Bisht B; Hope A; Mukherjee A; Paul MK
    Ann Biomed Eng; 2021 Apr; 49(4):1128-1150. PubMed ID: 33674908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human-scale tissues with patterned vascular networks by additive manufacturing of sacrificial sugar-protein composites.
    Eltaher HM; Abukunna FE; Ruiz-Cantu L; Stone Z; Yang J; Dixon JE
    Acta Biomater; 2020 Sep; 113():339-349. PubMed ID: 32553918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering.
    Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advancing the field of 3D biomaterial printing.
    Jakus AE; Rutz AL; Shah RN
    Biomed Mater; 2016 Jan; 11(1):014102. PubMed ID: 26752507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional endothelial cell incorporation within bioactive nanofibrous scaffolds through concurrent emulsion electrospinning and coaxial cell electrospraying.
    Zhao Q; Zhou Y; Wang M
    Acta Biomater; 2021 Mar; 123():312-324. PubMed ID: 33508508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Bioprinting Technologies for Tissue Engineering Applications.
    Gu BK; Choi DJ; Park SJ; Kim YJ; Kim CH
    Adv Exp Med Biol; 2018; 1078():15-28. PubMed ID: 30357616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three dimensional printed nanostructure biomaterials for bone tissue engineering.
    Marew T; Birhanu G
    Regen Ther; 2021 Dec; 18():102-111. PubMed ID: 34141834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.