These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35087865)

  • 41. Biodegradable Polymers as the Pivotal Player in the Design of Tissue Engineering Scaffolds.
    Zhang F; King MW
    Adv Healthc Mater; 2020 Jul; 9(13):e1901358. PubMed ID: 32424996
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.
    Attalla R; Ling C; Selvaganapathy P
    Biomed Microdevices; 2016 Feb; 18(1):17. PubMed ID: 26842949
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip.
    Li P; Yu H; Liu N; Wang F; Lee GB; Wang Y; Liu L; Li WJ
    Biomater Sci; 2018 May; 6(6):1371-1378. PubMed ID: 29790875
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optical projection tomography can be used to investigate spatial distribution of chondrocytes in three-dimensional biomaterial scaffolds for cartilage tissue engineering.
    Järvinen E; Muhonen V; Haaparanta AM; Kellomäki M; Kiviranta I
    Biomed Mater Eng; 2014; 24(3):1549-53. PubMed ID: 24840193
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.
    Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P
    Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds.
    Mohanty S; Larsen LB; Trifol J; Szabo P; Burri HV; Canali C; Dufva M; Emnéus J; Wolff A
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():569-78. PubMed ID: 26117791
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Emerging Biofabrication Strategies for Engineering Complex Tissue Constructs.
    Pedde RD; Mirani B; Navaei A; Styan T; Wong S; Mehrali M; Thakur A; Mohtaram NK; Bayati A; Dolatshahi-Pirouz A; Nikkhah M; Willerth SM; Akbari M
    Adv Mater; 2017 May; 29(19):. PubMed ID: 28370405
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Biofabrication: new approaches for tissue regeneration].
    Horch RE; Weigand A; Wajant H; Groll J; Boccaccini AR; Arkudas A
    Handchir Mikrochir Plast Chir; 2018 Apr; 50(2):93-100. PubMed ID: 29378379
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regenerative Medicine Under the Control of 3D Scaffolds: Current State and Progress of Tissue Scaffolds.
    Golchin A; Farzaneh S; Porjabbar B; Sadegian F; Estaji M; Ranjbarvan P; Kanafimahbob M; Ranjbari J; Salehi-Nik N; Hosseinzadeh S
    Curr Stem Cell Res Ther; 2021; 16(2):209-229. PubMed ID: 32691716
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique.
    Li JL; Cai YL; Guo YL; Fuh JY; Sun J; Hong GS; Lam RN; Wong YS; Wang W; Tay BY; Thian ES
    J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):651-8. PubMed ID: 24155124
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors.
    Zhang J; Wehrle E; Rubert M; Müller R
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921417
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Additive manufacturing of photo-crosslinked gelatin scaffolds for adipose tissue engineering.
    Tytgat L; Van Damme L; Van Hoorick J; Declercq H; Thienpont H; Ottevaere H; Blondeel P; Dubruel P; Van Vlierberghe S
    Acta Biomater; 2019 Aug; 94():340-350. PubMed ID: 31136829
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Competent processing techniques for scaffolds in tissue engineering.
    Dutta RC; Dey M; Dutta AK; Basu B
    Biotechnol Adv; 2017; 35(2):240-250. PubMed ID: 28095322
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.
    Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Femtosecond-Laser-Based 3D Printing for Tissue Engineering and Cell Biology Applications.
    Ho CMB; Mishra A; Hu K; An J; Kim YJ; Yoon YJ
    ACS Biomater Sci Eng; 2017 Oct; 3(10):2198-2214. PubMed ID: 33445279
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Perfusion-decellularization of human ear grafts enables ECM-based scaffolds for auricular vascularized composite tissue engineering.
    Duisit J; Amiel H; Wüthrich T; Taddeo A; Dedriche A; Destoop V; Pardoen T; Bouzin C; Joris V; Magee D; Vögelin E; Harriman D; Dessy C; Orlando G; Behets C; Rieben R; Gianello P; Lengelé B
    Acta Biomater; 2018 Jun; 73():339-354. PubMed ID: 29654989
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Three-dimensional printing biotechnology for the regeneration of the tooth and tooth-supporting tissues.
    Ma Y; Xie L; Yang B; Tian W
    Biotechnol Bioeng; 2019 Feb; 116(2):452-468. PubMed ID: 30475386
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tunable Microstructured Membranes in Organs-on-Chips to Monitor Transendothelial Hydraulic Resistance.
    Das P; van der Meer AD; Vivas A; Arik YB; Remigy JC; Lahitte JF; Lammertink RGH; Bacchin P
    Tissue Eng Part A; 2019 Dec; 25(23-24):1635-1645. PubMed ID: 30957672
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of 3D Printed Gelatin-Based Scaffolds with Varying Pore Size for MSC-Based Adipose Tissue Engineering.
    Tytgat L; Kollert MR; Van Damme L; Thienpont H; Ottevaere H; Duda GN; Geissler S; Dubruel P; Van Vlierberghe S; Qazi TH
    Macromol Biosci; 2020 Apr; 20(4):e1900364. PubMed ID: 32077631
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Replacement of Rat Tracheas by Layered, Trachea-Like, Scaffold-Free Structures of Human Cells Using a Bio-3D Printing System.
    Machino R; Matsumoto K; Taniguchi D; Tsuchiya T; Takeoka Y; Taura Y; Moriyama M; Tetsuo T; Oyama S; Takagi K; Miyazaki T; Hatachi G; Doi R; Shimoyama K; Matsuo N; Yamasaki N; Nakayama K; Nagayasu T
    Adv Healthc Mater; 2019 Apr; 8(7):e1800983. PubMed ID: 30632706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.