These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35087953)

  • 1. Improving one-step scarless genome editing in
    Götze KJ; Mrestani A; Beckmann P; Krohn K; Le Duc D; Velluva A; Böhme MA; Heckmann M; Abou Jamra R; Lemke JR; Bläker H; Scholz N; Ljaschenko D; Langenhan T
    Biol Methods Protoc; 2022; 7(1):bpac003. PubMed ID: 35087953
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Ewen-Campen B; Perrimon N
    G3 (Bethesda); 2018 Jul; 8(8):2749-2756. PubMed ID: 29934375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Seamless genome editing in Drosophila by combining CRISPR/Cas9 and piggyBac technologies].
    Wang J; Huang J; Xu R
    Yi Chuan; 2019 May; 41(5):422-429. PubMed ID: 31106778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9 and genome editing in Drosophila.
    Bassett AR; Liu JL
    J Genet Genomics; 2014 Jan; 41(1):7-19. PubMed ID: 24480743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas9 Genome Editing in Drosophila.
    Gratz SJ; Rubinstein CD; Harrison MM; Wildonger J; O'Connor-Giles KM
    Curr Protoc Mol Biol; 2015 Jul; 111():31.2.1-31.2.20. PubMed ID: 26131852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs.
    Lee HJ; Kim HJ; Lee SJ
    Genome Res; 2020 May; 30(5):768-775. PubMed ID: 32327447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage.
    Zhang JP; Li XL; Li GH; Chen W; Arakaki C; Botimer GD; Baylink D; Zhang L; Wen W; Fu YW; Xu J; Chun N; Yuan W; Cheng T; Zhang XB
    Genome Biol; 2017 Feb; 18(1):35. PubMed ID: 28219395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient
    Ginn SL; Amaya AK; Liao SHY; Zhu E; Cunningham SC; Lee M; Hallwirth CV; Logan GJ; Tay SS; Cesare AJ; Pickett HA; Grompe M; Dilworth K; Lisowski L; Alexander IE
    JHEP Rep; 2020 Feb; 2(1):100065. PubMed ID: 32039406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR Co-Editing Strategy for Scarless Homology-Directed Genome Editing.
    Reuven N; Adler J; Myers N; Shaul Y
    Int J Mol Sci; 2021 Apr; 22(7):. PubMed ID: 33916763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of gene-edited pigs harboring orthologous human mutations via double cutting by CRISPR/Cas9 with long single-stranded DNAs as homology-directed repair templates by zygote injection.
    Xie F; Zhou X; Lin T; Wang L; Liu C; Luo X; Luo L; Chen H; Guo K; Wei H; Wang Y
    Transgenic Res; 2020 Dec; 29(5-6):587-598. PubMed ID: 33170439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tools and strategies for scarless allele replacement in Drosophila using CRISPR/Cas9.
    Lamb AM; Walker EA; Wittkopp PJ
    Fly (Austin); 2017 Jan; 11(1):53-64. PubMed ID: 27494619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9-Based Genome Editing Toolbox for Arabidopsis thaliana.
    Miki D; Zinta G; Zhang W; Peng F; Feng Z; Zhu JK
    Methods Mol Biol; 2021; 2200():121-146. PubMed ID: 33175375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel and Efficient Method for Bacteria Genome Editing Employing both CRISPR/Cas9 and an Antibiotic Resistance Cassette.
    Zhang H; Cheng QX; Liu AM; Zhao GP; Wang J
    Front Microbiol; 2017; 8():812. PubMed ID: 28529507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erratum: CRISPR/Cas9-mediated Targeted Integration In Vivo Using a Homology-mediated End Joining-based Strategy.
    J Vis Exp; 2021 Mar; (169):. PubMed ID: 33690264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How to start your monocot CRISPR/Cas project: plasmid design, efficiency detection, and offspring analysis.
    Yue JJ; Hong CY; Wei P; Tsai YC; Lin CS
    Rice (N Y); 2020 Feb; 13(1):9. PubMed ID: 32016561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Rapid and Facile Pipeline for Generating Genomic Point Mutants in C. elegans Using CRISPR/Cas9 Ribonucleoproteins.
    Prior H; MacConnachie L; Martinez JL; Nicholl GCB; Beg AA
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29757293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CRISPR/Cas9 method to generate heterozygous alleles in Saccharomyces cerevisiae.
    EauClaire SF; Webb CJ
    Yeast; 2019 Oct; 36(10):607-615. PubMed ID: 31301239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani.
    Zhang WW; Matlashewski G
    mBio; 2015 Jul; 6(4):e00861. PubMed ID: 26199327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of both type I-B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium
    Walker JE; Lanahan AA; Zheng T; Toruno C; Lynd LR; Cameron JC; Olson DG; Eckert CA
    Metab Eng Commun; 2020 Jun; 10():e00116. PubMed ID: 31890588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.