These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35088045)

  • 1. Prediction of
    Stocker MD; Pachepsky YA; Hill RL
    Front Artif Intell; 2021; 4():768650. PubMed ID: 35088045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using machine learning models to estimate Escherichia coli concentration in an irrigation pond from water quality and drone-based RGB imagery data.
    Hong SM; Morgan BJ; Stocker MD; Smith JE; Kim MS; Cho KH; Pachepsky YA
    Water Res; 2024 Aug; 260():121861. PubMed ID: 38875854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal Stability of Escherichia coli Concentrations in Waters of Two Irrigation Ponds in Maryland.
    Pachepsky Y; Kierzewski R; Stocker M; Sellner K; Mulbry W; Lee H; Kim M
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drone-based imaging to assess the microbial water quality in an irrigation pond: A pilot study.
    Morgan BJ; Stocker MD; Valdes-Abellan J; Kim MS; Pachepsky Y
    Sci Total Environ; 2020 May; 716():135757. PubMed ID: 31837850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraseasonal variation of E. coli and environmental covariates in two irrigation ponds in Maryland, USA.
    Stocker MD; Pachepsky YA; Hill RL; Sellner KG; Macarisin D; Staver KW
    Sci Total Environ; 2019 Jun; 670():732-740. PubMed ID: 30909049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intra-daily variation of Escherichia coli concentrations in agricultural irrigation ponds.
    Stocker MD; Smith JE; Hill RL; Pachepsky YA
    J Environ Qual; 2022 Jul; 51(4):719-730. PubMed ID: 35419843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A preliminary evaluation of microbial water quality in the irrigation pond.
    Zeki S
    Water Environ Res; 2022 Jul; 94(7):e10757. PubMed ID: 35765771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low Concentration of Salmonella enterica and Generic Escherichia coli in Farm Ponds and Irrigation Distribution Systems Used for Mixed Produce Production in Southern Georgia.
    Antaki EM; Vellidis G; Harris C; Aminabadi P; Levy K; Jay-Russell MT
    Foodborne Pathog Dis; 2016 Oct; 13(10):551-558. PubMed ID: 27400147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Integrated Smart Pond Water Quality Monitoring and Fish Farming Recommendation Aquabot System.
    Hemal MM; Rahman A; Nurjahan ; Islam F; Ahmed S; Kaiser MS; Ahmed MR
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing and predicting water quality index with key water parameters by machine learning models in coastal cities, China.
    Xu J; Mo Y; Zhu S; Wu J; Jin G; Wang YG; Ji Q; Li L
    Heliyon; 2024 Jul; 10(13):e33695. PubMed ID: 39044968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the performance of decision tree (DT) algorithms and extreme learning machine (ELM) model in the prediction of water quality of the Upper Green River watershed.
    Anmala J; Turuganti V
    Water Environ Res; 2021 Nov; 93(11):2360-2373. PubMed ID: 34528328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraseasonal variation of phycocyanin concentrations and environmental covariates in two agricultural irrigation ponds in Maryland, USA.
    Smith JE; Stocker MD; Wolny JL; Hill RL; Pachepsky YA
    Environ Monit Assess; 2020 Oct; 192(11):706. PubMed ID: 33064217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of pollutant removal efficiency of urban stormwater wet ponds and the application of machine learning algorithms.
    Yang Y; Zhu DZ; Loewen MR; Ahmed SS; Zhang W; Yan H; van Duin B; Mahmood K
    Sci Total Environ; 2023 Dec; 905():167119. PubMed ID: 37717762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretability Versus Accuracy: A Comparison of Machine Learning Models Built Using Different Algorithms, Performance Measures, and Features to Predict
    Weller DL; Love TMT; Wiedmann M
    Front Artif Intell; 2021; 4():628441. PubMed ID: 34056577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal prediction of daily PM
    Wu Y; Lin S; Shi K; Ye Z; Fang Y
    Environ Sci Pollut Res Int; 2022 Jun; 29(30):45821-45836. PubMed ID: 35150424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust machine learning algorithms for predicting coastal water quality index.
    Uddin MG; Nash S; Mahammad Diganta MT; Rahman A; Olbert AI
    J Environ Manage; 2022 Nov; 321():115923. PubMed ID: 35988401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survival dynamics of fecal bacteria in ponds in agricultural watersheds of the Piedmont and Coastal Plain of Georgia.
    Jenkins MB; Endale DM; Fisher DS; Adams MP; Lowrance R; Newton GL; Vellidis G
    Water Res; 2012 Jan; 46(1):176-86. PubMed ID: 22088271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of storm runoff on Salmonella and Escherichia coli prevalence in irrigation ponds of fresh produce farms in southern Georgia.
    Harris CS; Tertuliano M; Rajeev S; Vellidis G; Levy K
    J Appl Microbiol; 2018 Mar; 124(3):910-921. PubMed ID: 29316043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Risk Prediction Model for Physical Restraints Among Older Chinese Adults in Long-term Care Facilities: Machine Learning Study.
    Wang J; Chen H; Wang H; Liu W; Peng D; Zhao Q; Xiao M
    J Med Internet Res; 2023 Apr; 25():e43815. PubMed ID: 37023416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parsimonious Mechanistic Modeling of Bacterial Runoff into Irrigation Ponds To Inform Food Safety Management of Agricultural Water Quality.
    Vazquez KM; Muñoz-Carpena R; Danyluk MD; Havelaar AH
    Appl Environ Microbiol; 2021 Jul; 87(15):e0059621. PubMed ID: 33990305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.