These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35088471)

  • 1. Chiral Ligand-Driven Systematic Synthesis of Coordination Polymers with Non-centrosymmetric Structures.
    Kuk Y; Kee J; Ok KM
    Chemistry; 2022 Apr; 28(19):e202200007. PubMed ID: 35088471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen-Bond-Driven Synergistically Enhanced Hyperpolarizability: Chiral Coordination Polymers with Nonpolar Structures Exhibiting Unusually Strong Second-Harmonic Generation.
    Kee J; Ok KM
    Angew Chem Int Ed Engl; 2021 Sep; 60(38):20656-20660. PubMed ID: 34097326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional Chiral d
    Lee J; Cho JB; Li Y; Lee KH; Jang JI; Ok KM
    Small; 2024 May; 20(21):e2309323. PubMed ID: 38085128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral metal-organic frameworks for photonics.
    Hall LA; D'Alessandro DM; Lakhwani G
    Chem Soc Rev; 2023 May; 52(10):3567-3590. PubMed ID: 37161868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chirality-Dependent Second-Order Nonlinear Optical Effect in 1D Organic-Inorganic Hybrid Perovskite Bulk Single Crystal.
    Fu D; Xin J; He Y; Wu S; Zhang X; Zhang XM; Luo J
    Angew Chem Int Ed Engl; 2021 Sep; 60(36):20021-20026. PubMed ID: 34223690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective synthesis of a chiral coordination polymer with circularly polarized visible laser.
    Wu ST; Cai ZW; Ye QY; Weng CH; Huang XH; Hu XL; Huang CC; Zhuang NF
    Angew Chem Int Ed Engl; 2014 Nov; 53(47):12860-4. PubMed ID: 25251289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circularly Polarized Luminescence from Inorganic Materials: Encapsulating Guest Lanthanide Oxides in Chiral Silica Hosts.
    Sugimoto M; Liu XL; Tsunega S; Nakajima E; Abe S; Nakashima T; Kawai T; Jin RH
    Chemistry; 2018 May; 24(25):6519-6524. PubMed ID: 29341293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 0D chiral hybrid indium(III) halides for second harmonic generation.
    Qi S; Ge F; Han X; Cheng P; Shi R; Liu C; Zheng Y; Xin M; Xu J
    Dalton Trans; 2022 Jun; 51(22):8593-8599. PubMed ID: 35621191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magneto-chiral Nonlinear Optical Effect with Large Anisotropic Response in Two-Dimensional Halide Perovskite.
    Okada D; Araoka F
    Angew Chem Int Ed Engl; 2024 May; 63(21):e202402081. PubMed ID: 38544406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bulk Chiral Halide Perovskite Single Crystals for Active Circular Dichroism and Circularly Polarized Luminescence.
    Dang Y; Liu X; Sun Y; Song J; Hu W; Tao X
    J Phys Chem Lett; 2020 Mar; 11(5):1689-1696. PubMed ID: 32039602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optically Active CdSe-Dot/CdS-Rod Nanocrystals with Induced Chirality and Circularly Polarized Luminescence.
    Cheng J; Hao J; Liu H; Li J; Li J; Zhu X; Lin X; Wang K; He T
    ACS Nano; 2018 Jun; 12(6):5341-5350. PubMed ID: 29791135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulation of Chiral Nonlinear Optical Effect by Light-Matter Strong Coupling.
    Okada D; Araoka F
    Nano Lett; 2024 Jun; ():. PubMed ID: 38836611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism.
    Zhuo GY; Lee H; Hsu KJ; Huttunen MJ; Kauranen M; Lin YY; Chu SW
    J Microsc; 2014 Mar; 253(3):183-90. PubMed ID: 24392849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1D Cu(I)-based chiral organic-inorganic hybrid material with second harmonic generation and circular polarized luminescence.
    Wu ZY; Yu MX; Zhang ZQ; Jiang JX; Liu T; Jiang FL; Chen L; Hong MC
    Dalton Trans; 2024 Apr; 53(17):7315-7320. PubMed ID: 38590209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perovskite versus Nonperovskite: Modulating the Nature and Optical Properties of One-Dimensional Chiral Lead-Bromide Networks.
    Abhervé A; Allain M; Mercier N
    Inorg Chem; 2024 Apr; 63(13):5916-5923. PubMed ID: 38507564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endowing Metal-Organic Coordination Materials with Chiroptical Activity by a Chiral Anion Strategy.
    Zhao YY; Li ZQ; Gong ZL; Bernhard S; Zhong YW
    Chemistry; 2024 May; 30(28):e202400685. PubMed ID: 38469986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A series of multifunctional coordination polymers based on terpyridine and zinc halide: second-harmonic generation and two-photon absorption properties and intracellular imaging.
    Su J; Zhang J; Tian X; Zhao M; Song T; Yu J; Cui Y; Qian G; Zhong H; Luo L; Zhang Y; Wang C; Li S; Yang J; Zhou H; Wu J; Tian Y
    J Mater Chem B; 2017 Jul; 5(27):5458-5463. PubMed ID: 32264085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid-Phase Epitaxial Growth of Azapyrene-Based Chiral Metal-Organic Framework Thin Films for Circularly Polarized Luminescence.
    Chen SM; Chang LM; Yang XK; Luo T; Xu H; Gu ZG; Zhang J
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31421-31426. PubMed ID: 31389682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular structure, symmetry, and shape as design elements in the fabrication of molecular crystals for second harmonic generation and the role of molecules-in-materials.
    Radhakrishnan TP
    Acc Chem Res; 2008 Mar; 41(3):367-76. PubMed ID: 18260652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable Synthesis of Centrosymmetric/Noncentrosymmetric Phases for the Family of Halogen-Based Photonic Coordination Polymers to Enhance the Phase-Matching Second-Harmonic-Generation Response.
    Zhang J; Abudoureheman M; Lian Z; Liu J; Wu Q; Xuan X
    Inorg Chem; 2022 Feb; 61(8):3716-3722. PubMed ID: 35175049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.