BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35088513)

  • 1. Development of Methods to the Synthesis of β-Boryl Acyls, Imines and Nitriles.
    Das KK; Mahato S; Hazra S; Panda S
    Chem Rec; 2022 Apr; 22(4):e202100290. PubMed ID: 35088513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Synthesis Developments of Organoboron Compounds via Metal-Free Catalytic Borylation of Alkynes and Alkenes.
    Wen Y; Deng C; Xie J; Kang X
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30597884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-catalyzed reactions of diborons for synthesis of organoboron compounds.
    Ishiyama T; Miyaura N
    Chem Rec; 2004; 3(5):271-80. PubMed ID: 14762827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsymmetrical Diboron Reagents: Application in Borylation Reactions of Unsaturated Bonds.
    Ding S; Xu L; Miao Z
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30987277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lewis Base-Boryl Radicals Enabled Borylation Reactions and Selective Activation of Carbon-Heteroatom Bonds.
    Peng TY; Zhang FL; Wang YF
    Acc Chem Res; 2023 Jan; 56(2):169-186. PubMed ID: 36571794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Borylation and silylation of C-H bonds: a platform for diverse C-H bond functionalizations.
    Hartwig JF
    Acc Chem Res; 2012 Jun; 45(6):864-73. PubMed ID: 22075137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetracoordinate Boron Intermediates Enable Unconventional Transformations.
    Yang K; Song Q
    Acc Chem Res; 2021 May; 54(9):2298-2312. PubMed ID: 33852276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of catalysis in hydroboration of imines, nitriles, and carbodiimides.
    Rezaei Bazkiaei A; Findlater M; Gorden AEV
    Org Biomol Chem; 2022 May; 20(18):3675-3702. PubMed ID: 35451449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Air- and moisture-stable amphoteric molecules: enabling reagents in synthesis.
    He Z; Zajdlik A; Yudin AK
    Acc Chem Res; 2014 Apr; 47(4):1029-40. PubMed ID: 24495255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organoboron chemistry comes to light: recent advances in photoinduced synthetic approaches to organoboron compounds.
    Nguyen VD; Nguyen VT; Jin S; Dang HT; Larionov OV
    Tetrahedron; 2019 Feb; 75(5):584-602. PubMed ID: 31564756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular Organoboron Catalysts Enable Transformations with Unprecedented Reactivity.
    Yang GW; Zhang YY; Wu GP
    Acc Chem Res; 2021 Dec; 54(23):4434-4448. PubMed ID: 34806374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tri(boryl)alkanes and Tri(boryl)alkenes: The Versatile Reagents.
    Salvadó O; Fernández E
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32290330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, Structure, and Reactivity of Anionic sp(2) -sp(3) Diboron Compounds: Readily Accessible Boryl Nucleophiles.
    Pietsch S; Neeve EC; Apperley DC; Bertermann R; Mo F; Qiu D; Cheung MS; Dang L; Wang J; Radius U; Lin Z; Kleeberg C; Marder TB
    Chemistry; 2015 May; 21(19):7082-98. PubMed ID: 25877472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic three-component coupling of alkynes, imines, and organoboron reagents.
    Patel SJ; Jamison TF
    Angew Chem Int Ed Engl; 2003 Mar; 42(12):1364-7. PubMed ID: 12671969
    [No Abstract]   [Full Text] [Related]  

  • 15. Photoinduced Borylation for the Synthesis of Organoboron Compounds.
    Tian YM; Guo XN; Braunschweig H; Radius U; Marder TB
    Chem Rev; 2021 Apr; 121(7):3561-3597. PubMed ID: 33596057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper-boryl mediated organic synthesis.
    Hemming D; Fritzemeier R; Westcott SA; Santos WL; Steel PG
    Chem Soc Rev; 2018 Oct; 47(19):7477-7494. PubMed ID: 30206614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boron-Heteroatom Addition Reactions via Borylative Heterocyclization: Oxyboration, Aminoboration, and Thioboration.
    Issaian A; Tu KN; Blum SA
    Acc Chem Res; 2017 Oct; 50(10):2598-2609. PubMed ID: 28933550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Rh(I)/Bicyclo[2.2.1]heptadiene Catalysts to the Enantioselective Synthesis of Chiral Amines.
    Cheng YY; Li WS; Wu HL
    Chem Rec; 2021 Dec; 21(12):3954-3963. PubMed ID: 34596958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron Catalysis: A New Horizon Towards Organoboron-mediated C-C Cross-coupling.
    Mondal S; Kanti Das K; Panda S
    Chem Asian J; 2022 Dec; 17(23):e202200836. PubMed ID: 36219672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in asymmetric borylation by transition metal catalysis.
    Hu J; Ferger M; Shi Z; Marder TB
    Chem Soc Rev; 2021 Nov; 50(23):13129-13188. PubMed ID: 34709239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.