These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 35088600)
1. Bioengineering Human Cartilage-Bone Tissues for Modeling of Osteoarthritis. Wu JY; Vunjak-Novakovic G Stem Cells Dev; 2022 Aug; 31(15-16):399-405. PubMed ID: 35088600 [TBL] [Abstract][Full Text] [Related]
2. A human osteoarthritis osteochondral organ culture model for cartilage tissue engineering. Yeung P; Zhang W; Wang XN; Yan CH; Chan BP Biomaterials; 2018 Apr; 162():1-21. PubMed ID: 29428675 [TBL] [Abstract][Full Text] [Related]
3. Induced pluripotent stem cells in cartilage tissue engineering: a literature review. Owaidah AY Biosci Rep; 2024 May; 44(5):. PubMed ID: 38563479 [TBL] [Abstract][Full Text] [Related]
4. Scaffold-free bioprinted osteogenic and chondrogenic systems to model osteochondral physiology. Breathwaite EK; Weaver JR; Murchison AC; Treadwell ML; Odanga JJ; Lee JB Biomed Mater; 2019 Oct; 14(6):065010. PubMed ID: 31491773 [TBL] [Abstract][Full Text] [Related]
5. Tissue-engineering strategies to repair joint tissue in osteoarthritis: nonviral gene-transfer approaches. Madry H; Cucchiarini M Curr Rheumatol Rep; 2014 Oct; 16(10):450. PubMed ID: 25182678 [TBL] [Abstract][Full Text] [Related]
6. Cartilage degradation in osteoarthritis: A process of osteochondral remodeling resembles the endochondral ossification in growth plate? Xiao ZF; Su GY; Hou Y; Chen SD; Lin DK Med Hypotheses; 2018 Dec; 121():183-187. PubMed ID: 30396477 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional osteogenic and chondrogenic systems to model osteochondral physiology and degenerative joint diseases. Alexander PG; Gottardi R; Lin H; Lozito TP; Tuan RS Exp Biol Med (Maywood); 2014 Sep; 239(9):1080-95. PubMed ID: 24994814 [TBL] [Abstract][Full Text] [Related]
8. Osteochondral alterations in osteoarthritis. Suri S; Walsh DA Bone; 2012 Aug; 51(2):204-11. PubMed ID: 22023932 [TBL] [Abstract][Full Text] [Related]
9. Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints. Pan J; Wang B; Li W; Zhou X; Scherr T; Yang Y; Price C; Wang L Bone; 2012 Aug; 51(2):212-7. PubMed ID: 22197997 [TBL] [Abstract][Full Text] [Related]
10. Treatment of osteochondral defects in the rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots. Berninger MT; Wexel G; Rummeny EJ; Imhoff AB; Anton M; Henning TD; Vogt S J Vis Exp; 2013 May; (75):e4423. PubMed ID: 23728213 [TBL] [Abstract][Full Text] [Related]
11. Investigation of multiphasic 3D-bioplotted scaffolds for site-specific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications. Mellor LF; Nordberg RC; Huebner P; Mohiti-Asli M; Taylor MA; Efird W; Oxford JT; Spang JT; Shirwaiker RA; Loboa EG J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2017-2030. PubMed ID: 31880408 [TBL] [Abstract][Full Text] [Related]
12. Therapeutic Effects of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Combined with Cartilage Acellular Matrix Mediated Via Bone Morphogenic Protein 6 in a Rabbit Model of Articular Cruciate Ligament Transection. Jeon HJ; Yoon KA; An ES; Kang TW; Sim YB; Ahn J; Choi EK; Lee S; Seo KW; Kim YB; Kang KS Stem Cell Rev Rep; 2020 Jun; 16(3):596-611. PubMed ID: 32112264 [TBL] [Abstract][Full Text] [Related]
14. Articular cartilage tissue engineering: the role of signaling molecules. Kwon H; Paschos NK; Hu JC; Athanasiou K Cell Mol Life Sci; 2016 Mar; 73(6):1173-94. PubMed ID: 26811234 [TBL] [Abstract][Full Text] [Related]
15. Critical review on the physical and mechanical factors involved in tissue engineering of cartilage. Gaut C; Sugaya K Regen Med; 2015; 10(5):665-79. PubMed ID: 26038952 [TBL] [Abstract][Full Text] [Related]
16. Chondrogenic induction of human osteoarthritic cartilage-derived mesenchymal stem cells activates mineralization and hypertrophic and osteogenic gene expression through a mechanomiR. Hu N; Gao Y; Jayasuriya CT; Liu W; Du H; Ding J; Feng M; Chen Q Arthritis Res Ther; 2019 Jul; 21(1):167. PubMed ID: 31287025 [TBL] [Abstract][Full Text] [Related]
17. Osteoarthritis-derived chondrocytes are a potential source of multipotent progenitor cells for cartilage tissue engineering. Oda T; Sakai T; Hiraiwa H; Hamada T; Ono Y; Nakashima M; Ishizuka S; Matsukawa T; Yamashita S; Tsuchiya S; Ishiguro N Biochem Biophys Res Commun; 2016 Oct; 479(3):469-475. PubMed ID: 27644879 [TBL] [Abstract][Full Text] [Related]
18. Trends in Articular Cartilage Tissue Engineering: 3D Mesenchymal Stem Cell Sheets as Candidates for Engineered Hyaline-Like Cartilage. Thorp H; Kim K; Kondo M; Maak T; Grainger DW; Okano T Cells; 2021 Mar; 10(3):. PubMed ID: 33805764 [TBL] [Abstract][Full Text] [Related]
19. Use of cartilage derived from murine induced pluripotent stem cells for osteoarthritis drug screening. Willard VP; Diekman BO; Sanchez-Adams J; Christoforou N; Leong KW; Guilak F Arthritis Rheumatol; 2014 Nov; 66(11):3062-72. PubMed ID: 25047145 [TBL] [Abstract][Full Text] [Related]
20. Pharmaceutical therapeutics for articular regeneration and restoration: state-of-the-art technology for screening small molecular drugs. Chen Y; Sun H; Yao X; Yu Y; Tian T; Xu W; Zhou Y; Ouyang H Cell Mol Life Sci; 2021 Dec; 78(24):8127-8155. PubMed ID: 34783870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]