These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 35088668)

  • 21. Algal Polysaccharides-Based Hydrogels: Extraction, Synthesis, Characterization, and Applications.
    Lin J; Jiao G; Kermanshahi-Pour A
    Mar Drugs; 2022 Apr; 20(5):. PubMed ID: 35621958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradable synthetic polymers for tissue engineering.
    Gunatillake PA; Adhikari R
    Eur Cell Mater; 2003 May; 5():1-16; discussion 16. PubMed ID: 14562275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthetic biodegradable functional polymers for tissue engineering: a brief review.
    BaoLin G; Ma PX
    Sci China Chem; 2014 Apr; 57(4):490-500. PubMed ID: 25729390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradable poly(alpha-hydroxy acid) polymer scaffolds for bone tissue engineering.
    Yu NY; Schindeler A; Little DG; Ruys AJ
    J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):285-95. PubMed ID: 20127987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Critical evaluation of biodegradable polymers used in nanodrugs.
    Marin E; Briceño MI; Caballero-George C
    Int J Nanomedicine; 2013; 8():3071-90. PubMed ID: 23990720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Environmental Properties and Applications of Biodegradable Starch-Based Nanocomposites.
    Gamage A; Thiviya P; Mani S; Ponnusamy PG; Manamperi A; Evon P; Merah O; Madhujith T
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365571
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Poly(lactic acid) blends in biomedical applications.
    Saini P; Arora M; Kumar MNVR
    Adv Drug Deliv Rev; 2016 Dec; 107():47-59. PubMed ID: 27374458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-Term Vaccine Delivery and Immunological Responses Using Biodegradable Polymer-Based Carriers.
    Malek-Khatabi A; Tabandeh Z; Nouri A; Mozayan E; Sartorius R; Rahimi S; Jamaledin R
    ACS Appl Bio Mater; 2022 Nov; 5(11):5015-5040. PubMed ID: 36214209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biodegradable polymer scaffolds for cartilage tissue engineering.
    Lu L; Zhu X; Valenzuela RG; Currier BL; Yaszemski MJ
    Clin Orthop Relat Res; 2001 Oct; (391 Suppl):S251-70. PubMed ID: 11603709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodegradable 'intelligent' materials in response to physical stimuli for biomedical applications.
    Ju XJ; Xie R; Yang L; Chu LY
    Expert Opin Ther Pat; 2009 Apr; 19(4):493-507. PubMed ID: 19441928
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biocompatible and Biodegradable Polymer Optical Fiber for Biomedical Application: A Review.
    Wang Y; Huang Y; Bai H; Wang G; Hu X; Kumar S; Min R
    Biosensors (Basel); 2021 Nov; 11(12):. PubMed ID: 34940229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodegradable polymers derived from amino acids.
    Khan W; Muthupandian S; Farah S; Kumar N; Domb AJ
    Macromol Biosci; 2011 Dec; 11(12):1625-36. PubMed ID: 22052719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polysaccharides for Biodegradable Packaging Materials: Past, Present, and Future (Brief Review).
    Aleksanyan KV
    Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of natural polymers in bone tissue engineering.
    Guo L; Liang Z; Yang L; Du W; Yu T; Tang H; Li C; Qiu H
    J Control Release; 2021 Oct; 338():571-582. PubMed ID: 34481026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers.
    Kirillova A; Yeazel TR; Asheghali D; Petersen SR; Dort S; Gall K; Becker ML
    Chem Rev; 2021 Sep; 121(18):11238-11304. PubMed ID: 33856196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reconstructing nanofibers from natural polymers using surface functionalization approaches for applications in tissue engineering, drug delivery and biosensing devices.
    Sofi HS; Ashraf R; Khan AH; Beigh MA; Majeed S; Sheikh FA
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():1102-1124. PubMed ID: 30423692
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functionalized synthetic biodegradable polymer scaffolds for tissue engineering.
    Liu X; Holzwarth JM; Ma PX
    Macromol Biosci; 2012 Jul; 12(7):911-9. PubMed ID: 22396193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrospinning and electrospray of bio-based and natural polymers for biomaterials development.
    Soares RMD; Siqueira NM; Prabhakaram MP; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():969-982. PubMed ID: 30184827
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent advances in the development of biodegradable PHB-based toughening materials: Approaches, advantages and applications.
    Yeo JCC; Muiruri JK; Thitsartarn W; Li Z; He C
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():1092-1116. PubMed ID: 30184731
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradable Conducting Polymer-Based Composites for Biomedical Applications-A Review.
    Khan T; Vadivel G; Ramasamy B; Murugesan G; Sebaey TA
    Polymers (Basel); 2024 May; 16(11):. PubMed ID: 38891481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.