BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35089402)

  • 1. Microbial xylitol production.
    Kumar K; Singh E; Shrivastava S
    Appl Microbiol Biotechnol; 2022 Feb; 106(3):971-979. PubMed ID: 35089402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xylitol production from waste xylose mother liquor containing miscellaneous sugars and inhibitors: one-pot biotransformation by Candida tropicalis and recombinant Bacillus subtilis.
    Wang H; Li L; Zhang L; An J; Cheng H; Deng Z
    Microb Cell Fact; 2016 May; 15():82. PubMed ID: 27184671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries.
    Felipe Hernández-Pérez A; de Arruda PV; Sene L; da Silva SS; Kumar Chandel A; de Almeida Felipe MDG
    Crit Rev Biotechnol; 2019 Nov; 39(7):924-943. PubMed ID: 31311338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological production of xylitol by using nonconventional microbial strains.
    Manishimwe C; Feng Y; Sun J; Pan R; Jiang Y; Jiang W; Zhang W; Xin F; Jiang M
    World J Microbiol Biotechnol; 2022 Oct; 38(12):249. PubMed ID: 36306036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xylitol: a review on bioproduction, application, health benefits, and related safety issues.
    Ur-Rehman S; Mushtaq Z; Zahoor T; Jamil A; Murtaza MA
    Crit Rev Food Sci Nutr; 2015; 55(11):1514-28. PubMed ID: 24915309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xylitol production from a mutant strain of Candida tropicalis.
    Jeon YJ; Shin HS; Rogers PL
    Lett Appl Microbiol; 2011 Jul; 53(1):106-13. PubMed ID: 21554342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthetic strategies to produce xylitol: an economical venture.
    Xu Y; Chi P; Bilal M; Cheng H
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5143-5160. PubMed ID: 31101942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient detoxification of corn cob hydrolysate with ion-exchange resins for enhanced xylitol production by Candida tropicalis MTCC 6192.
    Kumar V; Krishania M; Preet Sandhu P; Ahluwalia V; Gnansounou E; Sangwan RS
    Bioresour Technol; 2018 Mar; 251():416-419. PubMed ID: 29276111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of engineered Candida tropicalis strain for efficient corncob-based xylitol-ethanol biorefinery.
    Singh AK; Deeba F; Kumar M; Kumari S; Wani SA; Paul T; Gaur NA
    Microb Cell Fact; 2023 Oct; 22(1):201. PubMed ID: 37803395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xylitol production on sugarcane biomass hydrolysate by newly identified Candida tropicalis JA2 strain.
    Morais Junior WG; Pacheco TF; Trichez D; Almeida JRM; Gonçalves SB
    Yeast; 2019 May; 36(5):349-361. PubMed ID: 30997699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High level xylitol production by Pichia fermentans using non-detoxified xylose-rich sugarcane bagasse and olive pits hydrolysates.
    Narisetty V; Castro E; Durgapal S; Coulon F; Jacob S; Kumar D; Kumar Awasthi M; Kishore Pant K; Parameswaran B; Kumar V
    Bioresour Technol; 2021 Dec; 342():126005. PubMed ID: 34592613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Xylitol production from corn cob hemicellulosic hydrolysate by Candida sp].
    Fang XN; Huang W; Xia LM
    Sheng Wu Gong Cheng Xue Bao; 2004 Mar; 20(2):295-8. PubMed ID: 15969126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical conversion of sugarcane straw hemicellulosic hydrolyzate supplemented with co-substrates for xylitol production.
    Hernández-Pérez AF; Costa IA; Silva DD; Dussán KJ; Villela TR; Canettieri EV; Carvalho JA; Soares Neto TG; Felipe MG
    Bioresour Technol; 2016 Jan; 200():1085-8. PubMed ID: 26615771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stepwise metabolic engineering of Candida tropicalis for efficient xylitol production from xylose mother liquor.
    Zhang L; Chen Z; Wang J; Shen W; Li Q; Chen X
    Microb Cell Fact; 2021 May; 20(1):105. PubMed ID: 34034730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atmospheric and room temperature plasma (ARTP) mutagenesis enables xylitol over-production with yeast Candida tropicalis.
    Zhang C; Qin J; Dai Y; Mu W; Zhang T
    J Biotechnol; 2019 Apr; 296():7-13. PubMed ID: 30853634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioconversion of lignocellulosic biomass to xylitol: An overview.
    Venkateswar Rao L; Goli JK; Gentela J; Koti S
    Bioresour Technol; 2016 Aug; 213():299-310. PubMed ID: 27142629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors that affect the biosynthesis of xylitol by xylose-fermenting yeasts. A review.
    Silva SS; Felipe MG; Mancilha IM
    Appl Biochem Biotechnol; 1998; 70-72():331-9. PubMed ID: 9627388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis.
    Kim JH; Han KC; Koh YH; Ryu YW; Seo JH
    J Ind Microbiol Biotechnol; 2002 Jul; 29(1):16-9. PubMed ID: 12080422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic enhancement of xylitol production from sugarcane bagasse using immobilized Candida tropicalis MTCC 184.
    Tizazu BZ; Roy K; Moholkar VS
    Bioresour Technol; 2018 Nov; 268():247-258. PubMed ID: 30081284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-arabinose pathway engineering for arabitol-free xylitol production in Candida tropicalis.
    Yoon BH; Jeon WY; Shim WY; Kim JH
    Biotechnol Lett; 2011 Apr; 33(4):747-53. PubMed ID: 21127946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.