These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 35089496)
1. Learning Large Q-Matrix by Restricted Boltzmann Machines. Li C; Ma C; Xu G Psychometrika; 2022 Sep; 87(3):1010-1041. PubMed ID: 35089496 [TBL] [Abstract][Full Text] [Related]
2. Learning Latent and Hierarchical Structures in Cognitive Diagnosis Models. Ma C; Ouyang J; Xu G Psychometrika; 2023 Mar; 88(1):175-207. PubMed ID: 35596101 [TBL] [Abstract][Full Text] [Related]
3. Two-Stage maximum likelihood estimation in the misspecified restricted latent class model. Wang S Br J Math Stat Psychol; 2018 May; 71(2):300-333. PubMed ID: 29080215 [TBL] [Abstract][Full Text] [Related]
4. A Procedure for Assessing the Completeness of the Q-Matrices of Cognitively Diagnostic Tests. Köhn HF; Chiu CY Psychometrika; 2017 Mar; 82(1):112-132. PubMed ID: 27714544 [TBL] [Abstract][Full Text] [Related]
5. Determining the Number of Attributes in Cognitive Diagnosis Modeling. Nájera P; Abad FJ; Sorrel MA Front Psychol; 2021; 12():614470. PubMed ID: 33658962 [TBL] [Abstract][Full Text] [Related]
6. Using machine learning to improve Q-matrix validation. Qin H; Guo L Behav Res Methods; 2024 Mar; 56(3):1916-1935. PubMed ID: 37231327 [TBL] [Abstract][Full Text] [Related]
7. An empirical Q-matrix validation method for the sequential generalized DINA model. Ma W; de la Torre J Br J Math Stat Psychol; 2020 Feb; 73(1):142-163. PubMed ID: 30723890 [TBL] [Abstract][Full Text] [Related]
8. Enhanced gradient for training restricted Boltzmann machines. Cho K; Raiko T; Ilin A Neural Comput; 2013 Mar; 25(3):805-31. PubMed ID: 23148412 [TBL] [Abstract][Full Text] [Related]
9. A General Method of Empirical Q-matrix Validation. de la Torre J; Chiu CY Psychometrika; 2016 Jun; 81(2):253-73. PubMed ID: 25943366 [TBL] [Abstract][Full Text] [Related]
10. Representational power of restricted boltzmann machines and deep belief networks. Le Roux N; Bengio Y Neural Comput; 2008 Jun; 20(6):1631-49. PubMed ID: 18254699 [TBL] [Abstract][Full Text] [Related]
11. Measuring the usefulness of hidden units in Boltzmann machines with mutual information. Berglund M; Raiko T; Cho K Neural Netw; 2015 Apr; 64():12-8. PubMed ID: 25318376 [TBL] [Abstract][Full Text] [Related]
12. Scalable Bayesian Approach for the Dina Q-Matrix Estimation Combining Stochastic Optimization and Variational Inference. Oka M; Okada K Psychometrika; 2023 Mar; 88(1):302-331. PubMed ID: 36097246 [TBL] [Abstract][Full Text] [Related]
13. Restricted Boltzmann machines based oversampling and semi-supervised learning for false positive reduction in breast CAD. Cao P; Liu X; Bao H; Yang J; Zhao D Biomed Mater Eng; 2015; 26 Suppl 1():S1541-7. PubMed ID: 26405918 [TBL] [Abstract][Full Text] [Related]
14. Temperature based Restricted Boltzmann Machines. Li G; Deng L; Xu Y; Wen C; Wang W; Pei J; Shi L Sci Rep; 2016 Jan; 6():19133. PubMed ID: 26758235 [TBL] [Abstract][Full Text] [Related]
15. Using Penalized EM Algorithm to Infer Learning Trajectories in Latent Transition CDM. Wang C Psychometrika; 2021 Mar; 86(1):167-189. PubMed ID: 33449306 [TBL] [Abstract][Full Text] [Related]
16. Cognitive Diagnostic Models With Attribute Hierarchies: Model Estimation With a Restricted Q-Matrix Design. Tu D; Wang S; Cai Y; Douglas J; Chang HH Appl Psychol Meas; 2019 Jun; 43(4):255-271. PubMed ID: 31156279 [TBL] [Abstract][Full Text] [Related]
17. Bayesian Estimation of the DINA Q matrix. Chen Y; Culpepper SA; Chen Y; Douglas J Psychometrika; 2018 Mar; 83(1):89-108. PubMed ID: 28861685 [TBL] [Abstract][Full Text] [Related]
18. An Empirical Q-Matrix Validation Method for the Polytomous G-DINA Model. de la Torre J; Qiu XL; Santos KC Psychometrika; 2022 Jun; 87(2):693-724. PubMed ID: 34843060 [TBL] [Abstract][Full Text] [Related]
19. On the Consistency of Q-Matrix Estimation: A Rejoinder. de la Torre J; Chiu CY Psychometrika; 2017 Jun; 82(2):528-529. PubMed ID: 27339703 [TBL] [Abstract][Full Text] [Related]