These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35089702)

  • 21. Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors.
    Mannan AA; Liu D; Zhang F; Oyarzún DA
    ACS Synth Biol; 2017 Oct; 6(10):1851-1859. PubMed ID: 28763198
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduction of Biosensor False Responses and Time Delay Using Dynamic Response and Theory-Guided Machine Learning.
    Zhang J; Srivatsa P; Ahmadzai FH; Liu Y; Song X; Karpatne A; Kong Z; Johnson BN
    ACS Sens; 2023 Nov; 8(11):4079-4090. PubMed ID: 37931911
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of novel metabolite-responsive transcription factors via transposon-mediated protein fusion.
    Younger AKD; Su PY; Shepard AJ; Udani SV; Cybulski TR; Tyo KEJ; Leonard JN
    Protein Eng Des Sel; 2018 Feb; 31(2):55-63. PubMed ID: 29385546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Growth Dependent Design Constraints of Transcription-Factor-Based Metabolite Biosensors.
    Hartline CJ; Zhang F
    ACS Synth Biol; 2022 Jul; 11(7):2247-2258. PubMed ID: 35700119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving the design of an oxidative stress sensing biosensor in yeast.
    Dacquay LC; McMillen DR
    FEMS Yeast Res; 2021 May; 21(4):. PubMed ID: 33864457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A High-Throughput Method for Identifying Novel Genes That Influence Metabolic Pathways Reveals New Iron and Heme Regulation in Pseudomonas aeruginosa.
    Glanville DG; Mullineaux-Sanders C; Corcoran CJ; Burger BT; Imam S; Donohue TJ; Ulijasz AT
    mSystems; 2021 Feb; 6(1):. PubMed ID: 33531406
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid construction of metabolite biosensors using domain-insertion profiling.
    Nadler DC; Morgan SA; Flamholz A; Kortright KE; Savage DF
    Nat Commun; 2016 Jul; 7():12266. PubMed ID: 27470466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetically Encoded FapR-NLuc as a Biosensor to Determine Malonyl-CoA in Situ at Subcellular Scales.
    Du Y; Hu H; Pei X; Du K; Wei T
    Bioconjug Chem; 2019 Mar; 30(3):826-832. PubMed ID: 30629412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria.
    Yang D; Kim WJ; Yoo SM; Choi JH; Ha SH; Lee MH; Lee SY
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):9835-9844. PubMed ID: 30232266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine learning-based design of meta-plasmonic biosensors with negative index metamaterials.
    Moon G; Choi JR; Lee C; Oh Y; Kim KH; Kim D
    Biosens Bioelectron; 2020 Sep; 164():112335. PubMed ID: 32553356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modularization and Response Curve Engineering of a Naringenin-Responsive Transcriptional Biosensor.
    De Paepe B; Maertens J; Vanholme B; De Mey M
    ACS Synth Biol; 2018 May; 7(5):1303-1314. PubMed ID: 29688705
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trade-Offs in Biosensor Optimization for Dynamic Pathway Engineering.
    Verma BK; Mannan AA; Zhang F; Oyarzún DA
    ACS Synth Biol; 2022 Jan; 11(1):228-240. PubMed ID: 34968029
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcription-Factor-based Biosensor Engineering for Applications in Synthetic Biology.
    Ding N; Zhou S; Deng Y
    ACS Synth Biol; 2021 May; 10(5):911-922. PubMed ID: 33899477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modular tuning engineering and versatile applications of genetically encoded biosensors.
    Zhang J; Pang Q; Wang Q; Qi Q; Wang Q
    Crit Rev Biotechnol; 2022 Nov; 42(7):1010-1027. PubMed ID: 34615431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution-guided engineering of small-molecule biosensors.
    Snoek T; Chaberski EK; Ambri F; Kol S; Bjørn SP; Pang B; Barajas JF; Welner DH; Jensen MK; Keasling JD
    Nucleic Acids Res; 2020 Jan; 48(1):e3. PubMed ID: 31777933
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine learning linked evolutionary biosensor array for highly sensitive and specific molecular identification.
    Kim H; Seong W; Rha E; Lee H; Kim SK; Kwon KK; Park KH; Lee DH; Lee SG
    Biosens Bioelectron; 2020 Dec; 170():112670. PubMed ID: 33045666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope.
    Singh A; Sharma A; Ahmed A; Sundramoorthy AK; Furukawa H; Arya S; Khosla A
    Biosensors (Basel); 2021 Sep; 11(9):. PubMed ID: 34562926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advancing Biosensors with Machine Learning.
    Cui F; Yue Y; Zhang Y; Zhang Z; Zhou HS
    ACS Sens; 2020 Nov; 5(11):3346-3364. PubMed ID: 33185417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering Modular Biosensors to Confer Metabolite-Responsive Regulation of Transcription.
    Younger AK; Dalvie NC; Rottinghaus AG; Leonard JN
    ACS Synth Biol; 2017 Feb; 6(2):311-325. PubMed ID: 27744683
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design, Engineering, and Characterization of Prokaryotic Ligand-Binding Transcriptional Activators as Biosensors in Yeast.
    Ambri F; Snoek T; Skjoedt ML; Jensen MK; Keasling JD
    Methods Mol Biol; 2018; 1671():269-290. PubMed ID: 29170965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.