BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35089720)

  • 1. Actomyosin-Assisted Pulling of Lipid Nanotubes from Lipid Vesicles and Cells.
    Jahnke K; Maurer SJ; Weber C; Bücher JEH; Schoenit A; D'Este E; Cavalcanti-Adam EA; Göpfrich K
    Nano Lett; 2022 Feb; 22(3):1145-1150. PubMed ID: 35089720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multicomponent and Multiphase Lipid Nanotubes Formed by Gliding Microtubule-Kinesin Motility and Phase-Separated Giant Unilamellar Vesicles.
    Imam ZI; Bachand GD
    Langmuir; 2019 Dec; 35(49):16281-16289. PubMed ID: 31730350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane localization of actin filaments stabilizes giant unilamellar vesicles against external deforming forces.
    Fink A; Fazliev S; Abele T; Spatz JP; Göpfrich K; Cavalcanti-Adam EA
    Eur J Cell Biol; 2024 Jun; 103(2):151428. PubMed ID: 38850712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charged giant unilamellar vesicles prepared by electroformation exhibit nanotubes and transbilayer lipid asymmetry.
    Steinkühler J; De Tillieux P; Knorr RL; Lipowsky R; Dimova R
    Sci Rep; 2018 Aug; 8(1):11838. PubMed ID: 30087440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studying actin-induced cell shape changes using Giant Unilamellar Vesicles and reconstituted actin networks.
    Lopes Dos Santos R; Campillo C
    Biochem Soc Trans; 2022 Oct; 50(5):1527-1539. PubMed ID: 36111807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Point-to-Plane Nonhomogeneous Electric-Field-Induced Simultaneous Formation of Giant Unilamellar Vesicles (GUVs) and Lipid Tubes.
    Zhu C; Zhang Y; Wang Y; Li Q; Mu W; Han X
    Chemistry; 2016 Feb; 22(9):2906-9. PubMed ID: 26756162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential regulation of GUV mechanics via actin network architectures.
    Wubshet NH; Wu B; Veerapaneni S; Liu AP
    Biophys J; 2023 Jun; 122(11):2068-2081. PubMed ID: 36397672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulling Membrane Nanotubes from Giant Unilamellar Vesicles.
    Prévost C; Tsai FC; Bassereau P; Simunovic M
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29286431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane protrusion coarsening and nanotubulation within giant unilamellar vesicles.
    Węgrzyn I; Jeffries GD; Nagel B; Katterle M; Gerrard SR; Brown T; Orwar O; Jesorka A
    J Am Chem Soc; 2011 Nov; 133(45):18046-9. PubMed ID: 21978148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitution of contractile actomyosin rings in vesicles.
    Litschel T; Kelley CF; Holz D; Adeli Koudehi M; Vogel SK; Burbaum L; Mizuno N; Vavylonis D; Schwille P
    Nat Commun; 2021 Apr; 12(1):2254. PubMed ID: 33859190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opposing Kinesin and Myosin-I Motors Drive Membrane Deformation and Tubulation along Engineered Cytoskeletal Networks.
    McIntosh BB; Pyrpassopoulos S; Holzbaur ELF; Ostap EM
    Curr Biol; 2018 Jan; 28(2):236-248.e5. PubMed ID: 29337076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabricating Multi-Component Lipid Nanotube Networks Using the Gliding Kinesin Motility Assay.
    Imam ZI; Bachand GD
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34369922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Branched actin cortices reconstituted in vesicles sense membrane curvature.
    Baldauf L; Frey F; Arribas Perez M; Idema T; Koenderink GH
    Biophys J; 2023 Jun; 122(11):2311-2324. PubMed ID: 36806830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular Cues Govern Shape and Cytoskeletal Organization in Giant Unilamellar Lipid Vesicles.
    Fink A; Doll CR; Yagüe Relimpio A; Dreher Y; Spatz JP; Göpfrich K; Cavalcanti-Adam EA
    ACS Synth Biol; 2023 Feb; 12(2):369-374. PubMed ID: 36652603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid lateral organization on giant unilamellar vesicles containing lipopolysaccharides.
    Kubiak J; Brewer J; Hansen S; Bagatolli LA
    Biophys J; 2011 Feb; 100(4):978-86. PubMed ID: 21320442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of a Minimal Actin Cortex by Coupling Actin Filaments to Reconstituted Membranes.
    Vogel SK
    Methods Mol Biol; 2016; 1365():213-23. PubMed ID: 26498787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of an actin network in vesicles under electric pulses.
    Perrier DL; Vahid A; Kathavi V; Stam L; Rems L; Mulla Y; Muralidharan A; Koenderink GH; Kreutzer MT; Boukany PE
    Sci Rep; 2019 May; 9(1):8151. PubMed ID: 31148577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Actomyosin interaction at low ATP concentrations.
    Maffei M; Longa E; Sabatini A; Vacca A; Iotti S
    Eur Biophys J; 2017 Mar; 46(2):195-202. PubMed ID: 28039513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of Hydrogel-Assisted Giant Unilamellar Vesicle Formation from Unsaturated Lipid Systems.
    Peruzzi J; Gutierrez MG; Mansfield K; Malmstadt N
    Langmuir; 2016 Dec; 32(48):12702-12709. PubMed ID: 27934517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-sized liposomes reveal how actomyosin cortical tension drives shape change.
    Carvalho K; Tsai FC; Lees E; Voituriez R; Koenderink GH; Sykes C
    Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16456-61. PubMed ID: 24065829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.