BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35089786)

  • 21. Cobalt-Polypyrrole/Melamine-Derived Co-N@NC Catalysts for Efficient Base-Free Formic Acid Dehydrogenation and Formylation of Quinolines through Transfer Hydrogenation.
    Leng Y; Du S; Feng G; Sang X; Jiang P; Li H; Wang D
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):474-483. PubMed ID: 31802662
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Developments in Reversible CO
    Kushwaha S; Parthiban J; Singh SK
    ACS Omega; 2023 Oct; 8(42):38773-38793. PubMed ID: 37901502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two-Dimensional Metal-Organic Layers for Electrochemical Acceptorless Dehydrogenation of N-Heterocycles.
    Yang L; Ma FX; Xu F; Li D; Su L; Xu HC; Wang C
    Chem Asian J; 2019 Oct; 14(20):3557-3560. PubMed ID: 31012269
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acceptorless Dehydrogenation of N-Heterocycles by Merging Visible-Light Photoredox Catalysis and Cobalt Catalysis.
    He KH; Tan FF; Zhou CZ; Zhou GJ; Yang XL; Li Y
    Angew Chem Int Ed Engl; 2017 Mar; 56(11):3080-3084. PubMed ID: 28156039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances in the synthesis of N-heteroarenes
    Bera A; Bera S; Banerjee D
    Chem Commun (Camb); 2021 Dec; 57(97):13042-13058. PubMed ID: 34781335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Room Temperature Acceptorless Alkane Dehydrogenation from Molecular σ-Alkane Complexes.
    McKay AI; Bukvic AJ; Tegner BE; Burnage AL; Martı Nez-Martı Nez AJ; Rees NH; Macgregor SA; Weller AS
    J Am Chem Soc; 2019 Jul; 141(29):11700-11712. PubMed ID: 31246012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Manganese-Catalyzed Multicomponent Synthesis of Pyrroles through Acceptorless Dehydrogenation Hydrogen Autotransfer Catalysis: Experiment and Computation.
    Borghs JC; Azofra LM; Biberger T; Linnenberg O; Cavallo L; Rueping M; El-Sepelgy O
    ChemSusChem; 2019 Jul; 12(13):3083-3088. PubMed ID: 30589227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts.
    Bernskoetter WH; Hazari N
    Acc Chem Res; 2017 Apr; 50(4):1049-1058. PubMed ID: 28306247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acceptorless or Transfer Dehydrogenation of Glycerol Catalyzed by Base Metal Salt Cobaltous Chloride - Facile Access to Lactic Acid and Hydrogen or Isopropanol.
    Narjinari H; Dhole S; Kumar A
    Chemistry; 2024 Jan; 30(1):e202302686. PubMed ID: 37811834
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms for dehydrogenation and hydrogenation of N-heterocycles using PNP-pincer-supported iron catalysts: a density functional study.
    Sawatlon B; Surawatanawong P
    Dalton Trans; 2016 Oct; 45(38):14965-78. PubMed ID: 27550424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrogen-Doped Carbon as a Highly Active Metal-Free Catalyst for the Selective Oxidative Dehydrogenation of N-Heterocycles.
    Li X; Yuan Z; Liu Y; Yang H; Nie J; Wang G; Liu B
    ChemSusChem; 2022 Aug; 15(15):e202200753. PubMed ID: 35504842
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visible-Light-Promoted Iridium(III)-Catalyzed Acceptorless Dehydrogenation of N-Heterocycles at Room Temperature.
    Mejuto C; Ibáñez-Ibáñez L; Guisado-Barrios G; Mata JA
    ACS Catal; 2022 May; 12(10):6238-6245. PubMed ID: 35633898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogenation or Dehydrogenation of N-Containing Heterocycles Catalyzed by a Single Manganese Complex.
    Zubar V; Borghs JC; Rueping M
    Org Lett; 2020 May; 22(10):3974-3978. PubMed ID: 32364749
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molybdenum Carbide: Controlling the Geometric and Electronic Structure of Noble Metals for the Activation of O-H and C-H Bonds.
    Deng Y; Ge Y; Xu M; Yu Q; Xiao D; Yao S; Ma D
    Acc Chem Res; 2019 Dec; 52(12):3372-3383. PubMed ID: 31411856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A molecular iron catalyst for the acceptorless dehydrogenation and hydrogenation of N-heterocycles.
    Chakraborty S; Brennessel WW; Jones WD
    J Am Chem Soc; 2014 Jun; 136(24):8564-7. PubMed ID: 24877556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 2-(N-Methylbenzyl)pyridine: A Potential Liquid Organic Hydrogen Carrier with Fast H
    Oh J; Jeong K; Kim TW; Kwon H; Han JW; Park JH; Suh YW
    ChemSusChem; 2018 Feb; 11(4):661-665. PubMed ID: 29282876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogenation and dehydrogenation iron pincer catalysts capable of metal-ligand cooperation by aromatization/dearomatization.
    Zell T; Milstein D
    Acc Chem Res; 2015 Jul; 48(7):1979-94. PubMed ID: 26079678
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis.
    Gunanathan C; Milstein D
    Science; 2013 Jul; 341(6143):1229712. PubMed ID: 23869021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acceptorless dehydrogenation and hydrogenation of N- and O-containing compounds on Pd
    Cui X; Huang Z; van Muyden AP; Fei Z; Wang T; Dyson PJ
    Sci Adv; 2020 Jul; 6(27):. PubMed ID: 32937440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Homogeneous Transition Metal Catalysis of Acceptorless Dehydrogenative Alcohol Oxidation: Applications in Hydrogen Storage and to Heterocycle Synthesis.
    Crabtree RH
    Chem Rev; 2017 Jul; 117(13):9228-9246. PubMed ID: 28051854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.