BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35089918)

  • 1. From complete cross-docking to partners identification and binding sites predictions.
    Dequeker C; Mohseni Behbahani Y; David L; Laine E; Carbone A
    PLoS Comput Biol; 2022 Jan; 18(1):e1009825. PubMed ID: 35089918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scoring optimisation of unbound protein-protein docking including protein binding site predictions.
    Schneider S; Zacharias M
    J Mol Recognit; 2012 Jan; 25(1):15-23. PubMed ID: 22213447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hidden partners: Using cross-docking calculations to predict binding sites for proteins with multiple interactions.
    Lagarde N; Carbone A; Sacquin-Mora S
    Proteins; 2018 Jul; 86(7):723-737. PubMed ID: 29664226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decrypting protein surfaces by combining evolution, geometry, and molecular docking.
    Dequeker C; Laine E; Carbone A
    Proteins; 2019 Nov; 87(11):952-965. PubMed ID: 31199528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards the prediction of protein interaction partners using physical docking.
    Wass MN; Fuentes G; Pons C; Pazos F; Valencia A
    Mol Syst Biol; 2011 Feb; 7():469. PubMed ID: 21326236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Great interactions: How binding incorrect partners can teach us about protein recognition and function.
    Vamparys L; Laurent B; Carbone A; Sacquin-Mora S
    Proteins; 2016 Oct; 84(10):1408-21. PubMed ID: 27287388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-protein docking using region-based 3D Zernike descriptors.
    Venkatraman V; Yang YD; Sael L; Kihara D
    BMC Bioinformatics; 2009 Dec; 10():407. PubMed ID: 20003235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CLUB-MARTINI: Selecting Favourable Interactions amongst Available Candidates, a Coarse-Grained Simulation Approach to Scoring Docking Decoys.
    Hou Q; Lensink MF; Heringa J; Feenstra KA
    PLoS One; 2016; 11(5):e0155251. PubMed ID: 27166787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of ZDOCK and IRAD in CAPRI rounds 28-34.
    Vreven T; Pierce BG; Borrman TM; Weng Z
    Proteins; 2017 Mar; 85(3):408-416. PubMed ID: 27718275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape complementarity of protein-protein complexes at multiple resolutions.
    Zhang Q; Sanner M; Olson AJ
    Proteins; 2009 May; 75(2):453-67. PubMed ID: 18837463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein social behavior makes a stronger signal for partner identification than surface geometry.
    Laine E; Carbone A
    Proteins; 2017 Jan; 85(1):137-154. PubMed ID: 27802579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lessons from (co-)evolution in the docking of proteins and peptides for CAPRI Rounds 28-35.
    Yu J; Andreani J; Ochsenbein F; Guerois R
    Proteins; 2017 Mar; 85(3):378-390. PubMed ID: 27701780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. InterEvDock2: an expanded server for protein docking using evolutionary and biological information from homology models and multimeric inputs.
    Quignot C; Rey J; Yu J; Tufféry P; Guerois R; Andreani J
    Nucleic Acids Res; 2018 Jul; 46(W1):W408-W416. PubMed ID: 29741647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-protein and peptide-protein docking and refinement using ATTRACT in CAPRI.
    Schindler CE; Chauvot de Beauchêne I; de Vries SJ; Zacharias M
    Proteins; 2017 Mar; 85(3):391-398. PubMed ID: 27785830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Docking proteins and peptides under evolutionary constraints in Critical Assessment of PRediction of Interactions rounds 38 to 45.
    Nadaradjane AA; Quignot C; Traoré S; Andreani J; Guerois R
    Proteins; 2020 Aug; 88(8):986-998. PubMed ID: 31746034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein docking using case-based reasoning.
    Ghoorah AW; Devignes MD; Smaïl-Tabbone M; Ritchie DW
    Proteins; 2013 Dec; 81(12):2150-8. PubMed ID: 24123156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rigid-Docking Approaches to Explore Protein-Protein Interaction Space.
    Matsuzaki Y; Uchikoga N; Ohue M; Akiyama Y
    Adv Biochem Eng Biotechnol; 2017; 160():33-55. PubMed ID: 27830312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein-protein binding supersites.
    Viswanathan R; Fajardo E; Steinberg G; Haller M; Fiser A
    PLoS Comput Biol; 2019 Jan; 15(1):e1006704. PubMed ID: 30615604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sense and simplicity in HADDOCK scoring: Lessons from CASP-CAPRI round 1.
    Vangone A; Rodrigues JP; Xue LC; van Zundert GC; Geng C; Kurkcuoglu Z; Nellen M; Narasimhan S; Karaca E; van Dijk M; Melquiond AS; Visscher KM; Trellet M; Kastritis PL; Bonvin AM
    Proteins; 2017 Mar; 85(3):417-423. PubMed ID: 27802573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible docking and refinement with a coarse-grained protein model using ATTRACT.
    de Vries S; Zacharias M
    Proteins; 2013 Dec; 81(12):2167-74. PubMed ID: 23996217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.