These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35089937)

  • 1. Intra-cardiac transfer of fatty acids from capillary to cardiomyocyte.
    van der Vusse GJ; Arts T; Bassingthwaighte JB; Reneman RS
    PLoS One; 2022; 17(1):e0261288. PubMed ID: 35089937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Fatty Acid Transfer from Artery to Cardiomyocyte.
    Arts T; Reneman RS; Bassingthwaighte JB; van der Vusse GJ
    PLoS Comput Biol; 2015 Dec; 11(12):e1004666. PubMed ID: 26675003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is fatty acid uptake in cardiomyocytes determined by physicochemical fatty acid partition between albumin and membranes?
    Rose H; Hennecke T; Kammermeier H
    Mol Cell Biochem; 1989 Jun 27-Jul 24; 88(1-2):31-6. PubMed ID: 2779542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty acid transfer across the myocardial capillary wall.
    Tschubar F; Rose H; Kammermeier H
    J Mol Cell Cardiol; 1993 Apr; 25(4):355-66. PubMed ID: 8340929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of palmitate transport in the heart.
    Bassingthwaighte JB; Noodleman L; van der Vusse G; Glatz JF
    Mol Cell Biochem; 1989 Jun 27-Jul 24; 88(1-2):51-8. PubMed ID: 2674667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The capillary transport system for free fatty acids in the heart.
    Goresky CA; Stremmel W; Rose CP; Guirguis S; Schwab AJ; Diede HE; Ibrahim E
    Circ Res; 1994 Jun; 74(6):1015-26. PubMed ID: 8187271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical steps in cellular fatty acid uptake and utilization.
    van der Vusse GJ; van Bilsen M; Glatz JF; Hasselbaink DM; Luiken JJ
    Mol Cell Biochem; 2002 Oct; 239(1-2):9-15. PubMed ID: 12479563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatty acid-binding to erythrocyte ghost membranes and transmembrane movement.
    Bojesen IN; Bojesen E
    Mol Cell Biochem; 1990 Oct 15-Nov 8; 98(1-2):209-15. PubMed ID: 2266961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational evidence for protein-mediated fatty acid transport across the sarcolemma.
    Musters MW; Bassingthwaighte JB; van Riel NA; van der Vusse GJ
    Biochem J; 2006 Feb; 393(Pt 3):669-78. PubMed ID: 16207175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake and metabolism of palmitate by isolated cardiac myocytes from adult rats: involvement of sarcolemmal proteins.
    Luiken JJ; van Nieuwenhoven FA; America G; van der Vusse GJ; Glatz JF
    J Lipid Res; 1997 Apr; 38(4):745-58. PubMed ID: 9144089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sarcolemmal fatty acid transfer in isolated cardiomyocytes governed by albumin/membrane-lipid partition.
    Rose H; Hennecke T; Kammermeier H
    J Mol Cell Cardiol; 1990 Aug; 22(8):883-92. PubMed ID: 2172557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty acid transfer across the myocardial capillary wall: no evidence of a substantial role for cytoplasmic fatty acid-binding protein.
    Van Nieuwenhoven FA; Verstijnen CP; Van Eys GJ; Van Breda E; De Jong YF; Van der Vusse GJ; Glatz JF
    J Mol Cell Cardiol; 1994 Dec; 26(12):1635-47. PubMed ID: 7731058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimensions of compartments and membrane surfaces in the intact rabbit heart of importance in studies on intramyocardial transfer of blood-borne substances.
    van der Vusse GJ; Verheyen F; Reneman RS; Arts T
    Histol Histopathol; 2016 Jan; 31(1):51-62. PubMed ID: 26343065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the mechanism of long chain fatty acid transport in cardiomyocytes as facilitated by cytoplasmic fatty acid-binding protein.
    Vork MM; Glatz JF; Van Der Vusse GJ
    J Theor Biol; 1993 Jan; 160(2):207-22. PubMed ID: 8474251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carrier-protein-mediated enhancement of fatty-acid binding and internalization in human T-lymphocytes.
    Uriel J; Torres JM; Anel A
    Biochim Biophys Acta; 1994 Feb; 1220(3):231-40. PubMed ID: 7508265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of long-chain native fatty acids across lipid bilayer membranes indicates that transbilayer flip-flop is rate limiting.
    Kleinfeld AM; Chu P; Romero C
    Biochemistry; 1997 Nov; 36(46):14146-58. PubMed ID: 9369487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty acid distribution in systems modeling the normal and diabetic human circulation. A 13C nuclear magnetic resonance study.
    Cistola DP; Small DM
    J Clin Invest; 1991 Apr; 87(4):1431-41. PubMed ID: 2010553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of Free Fatty Acids from Plasma to the Endothelium of Cardiac Muscle: A Theoretical Study.
    Barta E
    J Membr Biol; 2015 Aug; 248(4):783-93. PubMed ID: 25837993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Palmitate uptake by cardiac myocytes and endothelial cells.
    Burczynski FJ; Cai ZS; Moran JB; Geisbuhler T; Rovetto M
    Am J Physiol; 1995 Apr; 268(4 Pt 2):H1659-66. PubMed ID: 7733368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical Models Suggest Facilitated Fatty Acids Crossing of the Luminal Membrane in the Cardiac Muscle.
    Barta E
    J Membr Biol; 2017 Feb; 250(1):103-114. PubMed ID: 27913823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.