BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35089990)

  • 1. Joint neutron/molecular dynamics vibrational spectroscopy reveals softening of HIV-1 protease upon binding of a tight inhibitor.
    Kneller DW; Gerlits O; Daemen LL; Pavlova A; Gumbart JC; Cheng Y; Kovalevsky A
    Phys Chem Chem Phys; 2022 Feb; 24(6):3586-3597. PubMed ID: 35089990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of I50V mutant and I50L/A71V double mutant HIV-protease with inhibitor TMC114 (darunavir): molecular dynamics simulation and binding free energy studies.
    Meher BR; Wang Y
    J Phys Chem B; 2012 Feb; 116(6):1884-900. PubMed ID: 22239286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational softening of a protein on ligand binding.
    Balog E; Perahia D; Smith JC; Merzel F
    J Phys Chem B; 2011 Jun; 115(21):6811-7. PubMed ID: 21553905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study.
    Leonis G; Steinbrecher T; Papadopoulos MG
    J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights.
    Chetty S; Bhakat S; Martin AJ; Soliman ME
    J Biomol Struct Dyn; 2016; 34(1):135-51. PubMed ID: 25671669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydration Structure and Dynamics of Inhibitor-Bound HIV-1 Protease.
    Leidner F; Kurt Yilmaz N; Paulsen J; Muller YA; Schiffer CA
    J Chem Theory Comput; 2018 May; 14(5):2784-2796. PubMed ID: 29570286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the drug resistance of V32I and M46L mutant HIV-1 protease to inhibitor TMC114: flap dynamics and binding mechanism.
    Meher BR; Wang Y
    J Mol Graph Model; 2015 Mar; 56():60-73. PubMed ID: 25562662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Studies of a Rationally Selected Multi-Drug Resistant HIV-1 Protease Reveal Synergistic Effect of Distal Mutations on Flap Dynamics.
    Agniswamy J; Louis JM; Roche J; Harrison RW; Weber IT
    PLoS One; 2016; 11(12):e0168616. PubMed ID: 27992544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate Binding Stiffens Aspartate Aminotransferase by Altering the Enzyme Picosecond Vibrational Dynamics.
    Dajnowicz S; Cheng Y; Daemen LL; Weiss KL; Gerlits O; Mueser TC; Kovalevsky A
    ACS Omega; 2020 Aug; 5(30):18787-18797. PubMed ID: 32775880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing origin of decrease in potency of darunavir and amprenavir against HIV-2 relative to HIV-1 protease by molecular dynamics simulations.
    Chen J; Liang Z; Wang W; Yi C; Zhang S; Zhang Q
    Sci Rep; 2014 Nov; 4():6872. PubMed ID: 25362963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Frequency Dynamics of BSA Complementarily Studied by Raman and Inelastic Neutron Spectroscopy.
    Frontzek Neé Svanidze AV; Embs JP; Paccou L; Guinet Y; Hédoux A
    J Phys Chem B; 2017 May; 121(19):5125-5132. PubMed ID: 28382817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug resistance conferred by mutations outside the active site through alterations in the dynamic and structural ensemble of HIV-1 protease.
    Ragland DA; Nalivaika EA; Nalam MN; Prachanronarong KL; Cao H; Bandaranayake RM; Cai Y; Kurt-Yilmaz N; Schiffer CA
    J Am Chem Soc; 2014 Aug; 136(34):11956-63. PubMed ID: 25091085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interdependence of Inhibitor Recognition in HIV-1 Protease.
    Paulsen JL; Leidner F; Ragland DA; Kurt Yilmaz N; Schiffer CA
    J Chem Theory Comput; 2017 May; 13(5):2300-2309. PubMed ID: 28358514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass-dependent bond vibrational dynamics influence catalysis by HIV-1 protease.
    Kipp DR; Silva RG; Schramm VL
    J Am Chem Soc; 2011 Dec; 133(48):19358-61. PubMed ID: 22059645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by Amprenavir and Darunavir.
    Yu Y; Wang J; Shao Q; Shi J; Zhu W
    Sci Rep; 2015 May; 5():10517. PubMed ID: 26012849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of pressure on the low-frequency vibrational modes of lysozyme and water: a complementary inelastic neutron scattering and molecular dynamics simulation study.
    Lerbret A; Hédoux A; Annighöfer B; Bellissent-Funel MC
    Proteins; 2013 Feb; 81(2):326-40. PubMed ID: 23011876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decomposing the energetic impact of drug-resistant mutations: the example of HIV-1 protease-DRV binding.
    Cai Y; Schiffer C
    Methods Mol Biol; 2012; 819():551-60. PubMed ID: 22183557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resilience to resistance of HIV-1 protease inhibitors: profile of darunavir.
    Lefebvre E; Schiffer CA
    AIDS Rev; 2008; 10(3):131-42. PubMed ID: 18820715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing Protein-Ligand Binding Using Atomistic Simulation and Machine Learning: Application to Drug Resistance in HIV-1 Protease.
    Whitfield TW; Ragland DA; Zeldovich KB; Schiffer CA
    J Chem Theory Comput; 2020 Feb; 16(2):1284-1299. PubMed ID: 31877249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics and ligand docking of a hinge region variant of South African HIV-1 subtype C protease.
    Zondagh J; Balakrishnan V; Achilonu I; Dirr HW; Sayed Y
    J Mol Graph Model; 2018 Jun; 82():1-11. PubMed ID: 29625416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.