BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 35090853)

  • 1. Impact of a new functionalization of multiwalled carbon nanotubes on antifouling and permeability of PVDF nanocomposite membranes for dye wastewater treatment.
    Gholami S; Llacuna JL; Vatanpour V; Dehqan A; Paziresh S; Cortina JL
    Chemosphere; 2022 May; 294():133699. PubMed ID: 35090853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifouling polyvinylidene fluoride ultrafiltration membrane fabricated from embedding polypyrrole coated multiwalled carbon nanotubes.
    Vatanpour V; Ghadimi A; Karimi A; Khataee A; Yekavalangi ME
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():41-51. PubMed ID: 29752113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemin-Modified Multi-Walled Carbon Nanotube-Incorporated PVDF Membranes: Computational and Experimental Studies on Oil-Water Emulsion Separations.
    Abdulazeez I; Salhi B; Elsharif AM; Ahmad MS; Baig N; Abdelnaby MM
    Molecules; 2023 Jan; 28(1):. PubMed ID: 36615584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly effective ultrafiltration membranes based on plastic waste for dye removal from water.
    Mansor ES; Abdallah H; Shaban AM
    Water Environ Res; 2024 May; 96(5):e11018. PubMed ID: 38712584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized anti-biofouling performance of bactericides/cellulose nanocrystals composites modified PVDF ultrafiltration membrane for micro-polluted source water purification.
    Zhang G; Lv J; Yang F
    Water Sci Technol; 2019 Apr; 79(8):1437-1446. PubMed ID: 31169501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene oxide-polyethylene glycol incorporated PVDF nanocomposite ultrafiltration membrane with enhanced hydrophilicity, permeability, and antifouling performance.
    Ma C; Hu J; Sun W; Ma Z; Yang W; Wang L; Ran Z; Zhao B; Zhang Z; Zhang H
    Chemosphere; 2020 Aug; 253():126649. PubMed ID: 32268250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of High Flux Nanocomposite Polyphenylsulfone/Oxidized Multiwalled Carbon Nanotubes Membranes for Ultrafiltration Using the Systems with Critical Solution Temperatures.
    Plisko TV; Burts KS; Bildyukevich AV
    Membranes (Basel); 2022 Jul; 12(8):. PubMed ID: 35893442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of a Novel (PVDF/MWCNT/Polypyrrole) Antifouling High Flux Ultrafiltration Membrane for Crude Oil Wastewater Treatment.
    Hudaib B; Abu-Zurayk R; Waleed H; Ibrahim AA
    Membranes (Basel); 2022 Jul; 12(8):. PubMed ID: 36005666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visible-light-driven photocatalytic PVDF-TiO
    Sisay EJ; Veréb G; Pap Z; Gyulavári T; Ágoston Á; Kopniczky J; Hodúr C; Arthanareeswaran G; Sivasundari Arumugam GK; László Z
    Chemosphere; 2022 Nov; 307(Pt 1):135589. PubMed ID: 35803379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen peroxide treated g-C
    Vatanpour V; Paziresh S; Dehqan A; Asadzadeh-Khaneghah S; Habibi-Yangjeh A
    Chemosphere; 2021 Sep; 279():130616. PubMed ID: 34134415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of thermo-responsive PNIPAAm-MWCNT membranes and evaluation of its antifouling properties in dairy wastewater.
    Yaghoubi Z; Parsa JB
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109779. PubMed ID: 31349494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced management and antifouling performance of a novel NiFe-LDH@MnO
    Fan K; Kong N; Ma J; Lin H; Gao C; Lei J; Zeng Z; Hu J; Qi J; Shen L
    J Environ Manage; 2024 Feb; 351():119922. PubMed ID: 38150929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effectiveness of different CuO morphologies nanomaterials on the permeability, antifouling, and mechanical properties of PVDF/PVP/CuO ultrafiltration membrane for water treatment.
    Pakan M; Mirabi M; Valipour A
    Chemosphere; 2023 Oct; 337():139333. PubMed ID: 37379983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly antifouling polymer-nanoparticle-nanoparticle/polymer hybrid membranes.
    Vatanpour V; Jouyandeh M; Mousavi Khadem SS; Paziresh S; Dehqan A; Ganjali MR; Moradi H; Mirsadeghi S; Badiei A; Munir MT; Mohaddespour A; Rabiee N; Habibzadeh S; Mashhadzadeh AH; Nouranian S; Formela K; Saeb MR
    Sci Total Environ; 2022 Mar; 810():152228. PubMed ID: 34890675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of chitosan-aminopropylsilane graphene oxide nanocomposite hydrogel embedded PES membrane for improved filtration performance and lead separation.
    Amiri S; Asghari A; Vatanpour V; Rajabi M
    J Environ Manage; 2021 Sep; 294():112918. PubMed ID: 34139646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polypiperazine-amide Nanofiltration Membrane Modified by Different Functionalized Multiwalled Carbon Nanotubes (MWCNTs).
    Xue SM; Xu ZL; Tang YJ; Ji CH
    ACS Appl Mater Interfaces; 2016 Jul; 8(29):19135-44. PubMed ID: 27387192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of Photocatalytic PVDF Membranes Containing Inorganic Nanoparticles for Model Dairy Wastewater Treatment.
    Sisay EJ; Fazekas ÁF; Gyulavári T; Kopniczky J; Hopp B; Veréb G; László Z
    Membranes (Basel); 2023 Jul; 13(7):. PubMed ID: 37505022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanofiltration of dye solution using chitosan/poly(vinyl alcohol)/ZIF-8 thin film composite adsorptive membranes with PVDF membrane beneath as support.
    Khajavian M; Salehi E; Vatanpour V
    Carbohydr Polym; 2020 Nov; 247():116693. PubMed ID: 32829821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chitosan crosslinking time on the structure and antifouling performance of polyvinylidene fluoride membrane by surface gelation-immersion precipitation phase inversion.
    Sun S; Xu L; Li H; Du W; Zhang H; Zuo D
    Water Environ Res; 2024 Feb; 96(2):e10982. PubMed ID: 38316397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing of nanotextured inorganic-organic hybrid PVDF membrane for efficient separation of the oil-in-water emulsions.
    Baig N; Alowaid AM; Abdulazeez I; Salhi B; Sajid M; Kammakakam I
    Chemosphere; 2022 Dec; 308(Pt 3):136531. PubMed ID: 36150483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.