These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A sense of space in postrhinal cortex. LaChance PA; Todd TP; Taube JS Science; 2019 Jul; 365(6449):. PubMed ID: 31296737 [TBL] [Abstract][Full Text] [Related]
5. Distinct codes for environment structure and symmetry in postrhinal and retrosplenial cortices. LaChance PA; Hasselmo ME Nat Commun; 2024 Sep; 15(1):8025. PubMed ID: 39271679 [TBL] [Abstract][Full Text] [Related]
6. Entorhinal-retrosplenial circuits for allocentric-egocentric transformation of boundary coding. van Wijngaarden JB; Babl SS; Ito HT Elife; 2020 Nov; 9():. PubMed ID: 33138915 [TBL] [Abstract][Full Text] [Related]
7. Egocentric neural representation of geometric vertex in the retrosplenial cortex. Park K; Yeo Y; Shin K; Kwag J Nat Commun; 2024 Aug; 15(1):7156. PubMed ID: 39169030 [TBL] [Abstract][Full Text] [Related]
8. Spatial coordinate transforms linking the allocentric hippocampal and egocentric parietal primate brain systems for memory, action in space, and navigation. Rolls ET Hippocampus; 2020 Apr; 30(4):332-353. PubMed ID: 31697002 [TBL] [Abstract][Full Text] [Related]
9. Navigation task and action space drive the emergence of egocentric and allocentric spatial representations. Vijayabaskaran S; Cheng S PLoS Comput Biol; 2022 Oct; 18(10):e1010320. PubMed ID: 36315587 [TBL] [Abstract][Full Text] [Related]
10. Spatial cognition and the brain. Burgess N Ann N Y Acad Sci; 2008 Mar; 1124():77-97. PubMed ID: 18400925 [TBL] [Abstract][Full Text] [Related]
11. Environmental Geometry Aligns the Hippocampal Map during Spatial Reorientation. Keinath AT; Julian JB; Epstein RA; Muzzio IA Curr Biol; 2017 Feb; 27(3):309-317. PubMed ID: 28089516 [TBL] [Abstract][Full Text] [Related]
12. Learning the Vector Coding of Egocentric Boundary Cells from Visual Data. Lian Y; Williams S; Alexander AS; Hasselmo ME; Burkitt AN J Neurosci; 2023 Jul; 43(28):5180-5190. PubMed ID: 37286350 [TBL] [Abstract][Full Text] [Related]
13. A model for transforming egocentric views into goal-directed behavior. LaChance PA; Taube JS Hippocampus; 2023 May; 33(5):488-504. PubMed ID: 36780179 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic flexibility of the retrosplenial cortex enables its contribution to spatial cognition. Stacho M; Manahan-Vaughan D Trends Neurosci; 2022 Apr; 45(4):284-296. PubMed ID: 35183378 [TBL] [Abstract][Full Text] [Related]
15. Neural mechanisms of navigation involving interactions of cortical and subcortical structures. Hinman JR; Dannenberg H; Alexander AS; Hasselmo ME J Neurophysiol; 2018 Jun; 119(6):2007-2029. PubMed ID: 29442559 [TBL] [Abstract][Full Text] [Related]
16. Landmark-based spatial navigation across the human lifespan. Bécu M; Sheynikhovich D; Ramanoël S; Tatur G; Ozier-Lafontaine A; Authié CN; Sahel JA; Arleo A Elife; 2023 Mar; 12():. PubMed ID: 36912888 [TBL] [Abstract][Full Text] [Related]
17. Interacting networks of brain regions underlie human spatial navigation: a review and novel synthesis of the literature. Ekstrom AD; Huffman DJ; Starrett M J Neurophysiol; 2017 Dec; 118(6):3328-3344. PubMed ID: 28931613 [TBL] [Abstract][Full Text] [Related]
18. Neurons including hippocampal spatial view cells, and navigation in primates including humans. Rolls ET Hippocampus; 2021 Jun; 31(6):593-611. PubMed ID: 33760309 [TBL] [Abstract][Full Text] [Related]
19. Human spatial navigation: Neural representations of spatial scales and reference frames obtained from an ALE meta-analysis. Li J; Zhang R; Liu S; Liang Q; Zheng S; He X; Huang R Neuroimage; 2021 Sep; 238():118264. PubMed ID: 34129948 [TBL] [Abstract][Full Text] [Related]
20. Environmental Anchoring of Head Direction in a Computational Model of Retrosplenial Cortex. Bicanski A; Burgess N J Neurosci; 2016 Nov; 36(46):11601-11618. PubMed ID: 27852770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]