These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

35 related articles for article (PubMed ID: 35091235)

  • 1. Enhancement of adsorption of cyanobacteria, Microcystisa aeruginosaby bacterial-based compounds.
    Park YH; Kim S; Yun S; Choi YE
    Chemosphere; 2024 Aug; 361():142430. PubMed ID: 38844105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. β-cyclocitral induced rapid cell death of Microcystis aeruginosa.
    Wang X; Cao H; Zhu Y; Zhou T; Teng F; Tao Y
    Environ Pollut; 2024 May; 348():123824. PubMed ID: 38513945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combatting cyanobacteria: unraveling the potency of 316L-Cu stainless steel in inhibiting Microcystis aeruginosa growth.
    Hong H; Zhang X; Zhao J; Yang Y; Yang C; Yang K; Deng A; Wang F
    Environ Sci Pollut Res Int; 2024 Jan; 31(1):1644-1653. PubMed ID: 38038922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Microcystis aeruginosa removal efficiency through enhanced sonosensitivity of nitrogen-doped nanodiamonds.
    Wu X; Yang S; Li W; Wang J; Dular M; Tan X
    Ultrason Sonochem; 2024 Jul; 109():106993. PubMed ID: 39047459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the arrangement of cavitation generation unit on the performance of an advanced rotational hydrodynamic cavitation reactor.
    Sun X; Xia G; You W; Jia X; Manickam S; Tao Y; Zhao S; Yoon JY; Xuan X
    Ultrason Sonochem; 2023 Oct; 99():106544. PubMed ID: 37544171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation on the cavitation characteristic of a novel cylindrical rotational hydrodynamic cavitation reactor.
    Xue L; Hao Z; Ren W; Wang Y; Liu G; Liu J; Wang H; Bie H
    Ultrason Sonochem; 2024 Jul; 109():106999. PubMed ID: 39033717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical Discharge in a Cavitating Liquid under an Ultrasound Field.
    Karabassov T; Vasenko AS; Bayazitov VM; Golubov AA; Fedulov IS; Abramova AV
    J Phys Chem Lett; 2023 Dec; 14(49):10880-10885. PubMed ID: 38032839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control mechanisms of different bionic structures for hydrofoil cavitation.
    Yang Q; Li D; Xiao T; Chang H; Fu X; Wang H
    Ultrason Sonochem; 2024 Jan; 102():106745. PubMed ID: 38163405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corrigendum to ''Effect of the arrangement of cavitation generation unit on the performance of an advanced rotational hydrodynamic cavitation reactor'' [Ultrason. Sonochem. 99 (2023) 106544].
    Sun X; Xia G; You W; Jia X; Manickam S; Tao Y; Zhao S; Yoon JY; Xuan X
    Ultrason Sonochem; 2024 Jan; 102():106725. PubMed ID: 38105155
    [No Abstract]   [Full Text] [Related]  

  • 10. Ultravit high-speed vitrectomy, is higher always better? Hydrodynamic cavitation must be considered.
    Monasterio Bel J; Pérez-Salvador García E; Alcuaz Alcalaya A; Tello Fernández A
    Arch Soc Esp Oftalmol (Engl Ed); 2024 Jun; 99(6):267-268. PubMed ID: 38593980
    [No Abstract]   [Full Text] [Related]  

  • 11. Investigations on cavitation flow and vorticity transport in a jet pump cavitation reactor with variable area ratios.
    Jia X; Zhang S; Tang Z; Xue K; Chen J; Manickam S; Lin Z; Sun X; Zhu Z
    Ultrason Sonochem; 2024 Aug; 108():106964. PubMed ID: 38943849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing the origins of vortex cavitation in a Venturi tube by high speed X-ray imaging.
    Soyama H; Liang X; Yashiro W; Kajiwara K; Asimakopoulou EM; Bellucci V; Birnsteinova S; Giovanetti G; Kim C; Kirkwood HJ; Koliyadu JCP; Letrun R; Zhang Y; Uličný J; Bean R; Mancuso AP; Villanueva-Perez P; Sato T; Vagovič P; Eakins D; Korsunsky AM
    Ultrason Sonochem; 2023 Dec; 101():106715. PubMed ID: 38061251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of field-collected Microcystis aeruginosa in pilot-scale by a jet pump cavitation reactor.
    Xu S; Wang J; Chen W; Ji B; Yan H; Zhang Z; Long X
    Ultrason Sonochem; 2022 Feb; 83():105924. PubMed ID: 35091235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of Microcystis aeruginosa using hydrodynamic cavitation: performance and mechanisms.
    Li P; Song Y; Yu S
    Water Res; 2014 Oct; 62():241-8. PubMed ID: 24960124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of hydrodynamic cavitation on Microcystis aeruginosa: Physical and chemical factors.
    Li P; Song Y; Yu S; Park HD
    Chemosphere; 2015 Oct; 136():245-51. PubMed ID: 26026840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of jet cavitation on the growth of Microcystis aeruginosa.
    Xu Y; Yang J; Wang Y; Liu F; Jia J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(10):2345-58. PubMed ID: 17018417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of hydrodynamic cavitation in (waste)water treatment.
    Dular M; Griessler-Bulc T; Gutierrez-Aguirre I; Heath E; Kosjek T; Krivograd Klemenčič A; Oder M; Petkovšek M; Rački N; Ravnikar M; Šarc A; Širok B; Zupanc M; Žitnik M; Kompare B
    Ultrason Sonochem; 2016 Mar; 29():577-88. PubMed ID: 26515938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research progress of advanced oxidation technology for the removal of Microcystis aeruginosa: a review.
    Zhai Q; Song L; Ji X; Yu Y; Ye J; Xu W; Hou M
    Environ Sci Pollut Res Int; 2022 Jun; 29(27):40449-40461. PubMed ID: 35347626
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.