These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 3509133)

  • 1. Water vapor sorption of water-soluble substances: studies of crystalline solids below their critical relative humidities.
    Kontny MJ; Grandolfi GP; Zografi G
    Pharm Res; 1987 Apr; 4(2):104-12. PubMed ID: 3509133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deliquescence: Hygroscopicity of Water-Soluble Crystalline Solids.
    Tereshchenko AG
    J Pharm Sci; 2015 Nov; 104(11):3639-3652. PubMed ID: 26202663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Examination of Water Vapor Sorption by Multicomponent Crystalline and Amorphous Solids and Its Effects on Their Solid-State Properties.
    Newman A; Zografi G
    J Pharm Sci; 2019 Mar; 108(3):1061-1080. PubMed ID: 30391302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of temperature on water vapor sorption by some amorphous pharmaceutical sugars.
    Hancock BC; Dalton CR
    Pharm Dev Technol; 1999 Jan; 4(1):125-31. PubMed ID: 10027221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of methods for determining the deliquescence points of single crystalline ingredients and blends.
    Allan M; Mauer LJ
    Food Chem; 2016 Mar; 195():29-38. PubMed ID: 26575709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-state phase transitions initiated by water vapor sorption of crystalline L-660,711, a leukotriene D4 receptor antagonist.
    Vadas EB; Toma P; Zografi G
    Pharm Res; 1991 Feb; 8(2):148-55. PubMed ID: 2023861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New technology for the investigation of water vapor sorption-induced crystallographic form transformations of chemical compounds: a water vapor sorption gravimetry-dispersive Raman spectroscopy coupling.
    Feth MP; Jurascheck J; Spitzenberg M; Dillenz J; Bertele G; Stark H
    J Pharm Sci; 2011 Mar; 100(3):1080-92. PubMed ID: 20740677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moisture sorption kinetics for water-soluble substances. II: Experimental verification of heat transport control.
    Van Campen L; Amidon GL; Zografi G
    J Pharm Sci; 1983 Dec; 72(12):1388-93. PubMed ID: 6663471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moisture sorption kinetics for water-soluble substances. I: Theoretical considerations of heat transport control.
    Van Campen L; Amidon GL; Zografi G
    J Pharm Sci; 1983 Dec; 72(12):1381-8. PubMed ID: 6663470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of deliquescence lowering in enhancing chemical reactivity in physical mixtures.
    Salameh AK; Taylor LS
    J Phys Chem B; 2006 May; 110(20):10190-6. PubMed ID: 16706482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of water-solid interactions in crystalline and amorphous pharmaceutical materials.
    Sacchetti M
    J Pharm Sci; 2014 Sep; 103(9):2772-2783. PubMed ID: 24327540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the "hygroscopic" properties of active pharmaceutical ingredients.
    Newman AW; Reutzel-Edens SM; Zografi G
    J Pharm Sci; 2008 Mar; 97(3):1047-59. PubMed ID: 17630643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of organic species on the hygroscopic behaviors of inorganic aerosols.
    Choi MY; Chan CK
    Environ Sci Technol; 2002 Jun; 36(11):2422-8. PubMed ID: 12075799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Deliquescence Relative Humidities of Crystals and Crystal Mixtures.
    Veith H; Luebbert C; Sadowski G
    Molecules; 2021 May; 26(11):. PubMed ID: 34073307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved method to validate the relative humidity generation in sorption balances.
    Wadsö L; Anderberg A; Slund I; Söderman O
    Eur J Pharm Biopharm; 2009 May; 72(1):99-104. PubMed ID: 19022384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crospovidone interactions with water. II. Dynamic vapor sorption analysis of the effect of Polyplasdone particle size on its uptake and distribution of water.
    Saripella KK; Mallipeddi R; Neau SH
    Int J Pharm; 2014 Nov; 475(1-2):174-80. PubMed ID: 25152165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moisture sorption kinetics for water-soluble substances. IV: Studies with mixtures of solids.
    Kontny MJ; Zografi G
    J Pharm Sci; 1985 Feb; 74(2):124-7. PubMed ID: 3989679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the critical relative humidity at which the glassy to rubbery transition occurs in polydextrose using an automatic water vapor sorption instrument.
    Yuan X; Carter BP; Schmidt SJ
    J Food Sci; 2011; 76(1):E78-89. PubMed ID: 21535679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moisture-Mediated Interactions Between Amorphous Maltodextrins and Crystalline Fructose.
    Thorat A; Marrs KN; Ghorab MK; Meunier V; Forny L; Taylor LS; Mauer LJ
    J Food Sci; 2017 May; 82(5):1142-1156. PubMed ID: 28319658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of aging on the physical properties of amorphous trehalose.
    Surana R; Pyne A; Suryanarayanan R
    Pharm Res; 2004 May; 21(5):867-74. PubMed ID: 15180347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.