BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35091364)

  • 1. Automated identification of sleep disorders using wavelet-based features extracted from electrooculogram and electromyogram signals.
    Sharma M; Darji J; Thakrar M; Acharya UR
    Comput Biol Med; 2022 Apr; 143():105224. PubMed ID: 35091364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Characterization of Cyclic Alternating Pattern Using Wavelet-Based Features and Ensemble Learning Techniques with EEG Signals.
    Sharma M; Patel V; Tiwari J; Acharya UR
    Diagnostics (Basel); 2021 Jul; 11(8):. PubMed ID: 34441314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic Sleep-Stage Scoring in Healthy and Sleep Disorder Patients Using Optimal Wavelet Filter Bank Technique with EEG Signals.
    Sharma M; Tiwari J; Acharya UR
    Int J Environ Res Public Health; 2021 Mar; 18(6):. PubMed ID: 33802799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel automated robust dual-channel EEG-based sleep scoring system using optimal half-band pair linear-phase biorthogonal wavelet filter bank.
    Sharma M; Makwana P; Chad RS; Acharya UR
    Appl Intell (Dordr); 2023 Feb; ():1-19. PubMed ID: 36777881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic identification of insomnia using optimal antisymmetric biorthogonal wavelet filter bank with ECG signals.
    Sharma M; Dhiman HS; Acharya UR
    Comput Biol Med; 2021 Apr; 131():104246. PubMed ID: 33631498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Automated Wavelet-Based Sleep Scoring Model Using EEG, EMG, and EOG Signals with More Than 8000 Subjects.
    Sharma M; Yadav A; Tiwari J; Karabatak M; Yildirim O; Acharya UR
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CAPSCNet: A novel scattering network for automated identification of phasic cyclic alternating patterns of human sleep using multivariate EEG signals.
    Sharma M; Verma S; Anand D; Gadre VM; Acharya UR
    Comput Biol Med; 2023 Sep; 164():107259. PubMed ID: 37544251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An End-to-End Multi-Channel Convolutional Bi-LSTM Network for Automatic Sleep Stage Detection.
    Toma TI; Choi S
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proof of concept: Screening for REM sleep behaviour disorder with a minimal set of sensors.
    Cooray N; Andreotti F; Lo C; Symmonds M; Hu MTM; De Vos M
    Clin Neurophysiol; 2021 Apr; 132(4):904-913. PubMed ID: 33636605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank.
    Sharma M; Goyal D; Achuth PV; Acharya UR
    Comput Biol Med; 2018 Jul; 98():58-75. PubMed ID: 29775912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated classification of cyclic alternating pattern sleep phases in healthy and sleep-disordered subjects using convolutional neural network.
    Murarka S; Wadichar A; Bhurane A; Sharma M; Acharya UR
    Comput Biol Med; 2022 Jul; 146():105594. PubMed ID: 35659118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated detection of obstructive sleep apnea in more than 8000 subjects using frequency optimized orthogonal wavelet filter bank with respiratory and oximetry signals.
    Sharma M; Kumbhani D; Tiwari J; Kumar TS; Acharya UR
    Comput Biol Med; 2022 May; 144():105364. PubMed ID: 35299046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sleep stage classification using covariance features of multi-channel physiological signals on Riemannian manifolds.
    Jiang D; Ma Y; Wang Y
    Comput Methods Programs Biomed; 2019 Sep; 178():19-30. PubMed ID: 31416548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic sleep stage classification based on a two-channel electrooculogram and one-channel electromyogram.
    Li Y; Xu Z; Zhang Y; Cao Z; Chen H
    Physiol Meas; 2022 Jul; 43(7):. PubMed ID: 35487205
    [No Abstract]   [Full Text] [Related]  

  • 15. Sleep staging classification based on a new parallel fusion method of multiple sources signals.
    Hei Y; Yuan T; Fan Z; Yang B; Hu J
    Physiol Meas; 2022 Apr; 43(4):. PubMed ID: 35381584
    [No Abstract]   [Full Text] [Related]  

  • 16. Machine learning-empowered sleep staging classification using multi-modality signals.
    Satapathy SK; Brahma B; Panda B; Barsocchi P; Bhoi AK
    BMC Med Inform Decis Mak; 2024 May; 24(1):119. PubMed ID: 38711099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An effective hybrid feature selection using entropy weight method for automatic sleep staging.
    Wang W; Li J; Fang Y; Zheng Y; You F
    Physiol Meas; 2023 Oct; 44(10):. PubMed ID: 37783214
    [No Abstract]   [Full Text] [Related]  

  • 18. Automatic REM sleep detection associated with idiopathic rem sleep Behavior Disorder.
    Kempfner J; Sorensen GL; Sorensen HB; Jennum P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6063-6. PubMed ID: 22255722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sleep stage classification using single-channel EOG.
    Rahman MM; Bhuiyan MIH; Hassan AR
    Comput Biol Med; 2018 Nov; 102():211-220. PubMed ID: 30170769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel approach to automatic sleep stage classification using forehead electrophysiological signals.
    Guo H; Di Y; An X; Wang Z; Ming D
    Heliyon; 2022 Dec; 8(12):e12136. PubMed ID: 36590566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.