These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 35092231)

  • 41. Intracoronary imaging for detecting vulnerable plaque.
    Fujii K; Hao H; Ohyanagi M; Masuyama T
    Circ J; 2013; 77(3):588-95. PubMed ID: 23370454
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Clinical use of intracoronary imaging. Part 2: acute coronary syndromes, ambiguous coronary angiography findings, and guiding interventional decision-making: an expert consensus document of the European Association of Percutaneous Cardiovascular Interventions.
    Johnson TW; Räber L; di Mario C; Bourantas C; Jia H; Mattesini A; Gonzalo N; de la Torre Hernandez JM; Prati F; Koskinas K; Joner M; Radu MD; Erlinge D; Regar E; Kunadian V; Maehara A; Byrne RA; Capodanno D; Akasaka T; Wijns W; Mintz GS; Guagliumi G
    Eur Heart J; 2019 Aug; 40(31):2566-2584. PubMed ID: 31112213
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adoption of a new automated optical coherence tomography software to obtain a lipid plaque spread-out plot.
    Isidori F; Lella E; Marco V; Albertucci M; Ozaki Y; La Manna A; Biccirè FG; Romagnoli E; Bourantas CV; Paoletti G; Fabbiocchi F; Gatto L; Budassi S; Sticchi A; Burzotta F; Taglieri N; Calligaris G; Arbustini E; Alfonso F; Prati F
    Int J Cardiovasc Imaging; 2021 Nov; 37(11):3129-3135. PubMed ID: 34292435
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intracoronary Imaging in the Detection of Vulnerable Plaques.
    Batty JA; Subba S; Luke P; Gigi LW; Sinclair H; Kunadian V
    Curr Cardiol Rep; 2016 Mar; 18(3):28. PubMed ID: 26879196
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intracoronary imaging modalities for vulnerable plaques.
    Kato K; Yasutake M; Yonetsu T; Kim SJ; Xing L; Kratlian CM; Takano M; Mizuno K; Jang IK
    J Nippon Med Sch; 2011; 78(6):340-51. PubMed ID: 22197866
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multimodality imaging of intermediate lesions: Data from fractional flow reserve, optical coherence tomography, near-infrared spectroscopy-intravascular ultrasound.
    Biały D; Wawrzyńska M; Arkowski J; Rogała M; Proniewska K; Wańha W; Wojakowski W; Roleder T
    Cardiol J; 2018; 25(2):196-202. PubMed ID: 28714527
    [TBL] [Abstract][Full Text] [Related]  

  • 47. OCT-NIRS Imaging for Detection of Coronary Plaque Structure and Vulnerability.
    Muller J; Madder R
    Front Cardiovasc Med; 2020; 7():90. PubMed ID: 32582767
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Serial Assessment of Tissue Precursors and Progression of Coronary Calcification Analyzed by Fusion of IVUS and OCT: 5-Year Follow-Up of Scaffolded and Nonscaffolded Arteries.
    Zeng Y; Tateishi H; Cavalcante R; Tenekecioglu E; Suwannasom P; Sotomi Y; Collet C; Nie S; Jonker H; Dijkstra J; Radu MD; Räber L; McClean DR; van Geuns RJ; Christiansen EH; Fahrni T; Koolen J; Onuma Y; Bruining N; Serruys PW
    JACC Cardiovasc Imaging; 2017 Oct; 10(10 Pt A):1151-1161. PubMed ID: 28330651
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multimodality Intravascular Imaging to Predict Periprocedural Myocardial Infarction During Percutaneous Coronary Intervention.
    Kini AS; Motoyama S; Vengrenyuk Y; Feig JE; Pena J; Baber U; Bhat AM; Moreno P; Kovacic JC; Narula J; Sharma SK
    JACC Cardiovasc Interv; 2015 Jun; 8(7):937-45. PubMed ID: 26088511
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Combined use of optical coherence tomography and intravascular ultrasound during percutaneous coronary intervention in patients with coronary artery disease].
    Hou JB; Meng LB; Jing SH; Han ZG; Yu H; Yu B
    Zhonghua Xin Xue Guan Bing Za Zhi; 2008 Nov; 36(11):980-4. PubMed ID: 19102909
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy.
    Pu J; Mintz GS; Brilakis ES; Banerjee S; Abdel-Karim AR; Maini B; Biro S; Lee JB; Stone GW; Weisz G; Maehara A
    Eur Heart J; 2012 Feb; 33(3):372-83. PubMed ID: 22019821
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Insights into echo-attenuated plaques, echolucent plaques, and plaques with spotty calcification: novel findings from comparisons among intravascular ultrasound, near-infrared spectroscopy, and pathological histology in 2,294 human coronary artery segments.
    Pu J; Mintz GS; Biro S; Lee JB; Sum ST; Madden SP; Burke AP; Zhang P; He B; Goldstein JA; Stone GW; Muller JE; Virmani R; Maehara A
    J Am Coll Cardiol; 2014 Jun; 63(21):2220-33. PubMed ID: 24681142
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Shrinkage as a potential mechanism of recurrent clinical events in patients with a large vulnerable plaque.
    Liu X; Sun C; Tian J; Liu X; Fang S; Xi X; Gu X; Sun Y; Tian J; Yu B
    J Cardiovasc Med (Hagerstown); 2019 Aug; 20(8):518-524. PubMed ID: 30889077
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Association of cardiorespiratory fitness with characteristics of coronary plaque: assessment using integrated backscatter intravascular ultrasound and optical coherence tomography.
    Yoshikawa D; Ishii H; Kurebayashi N; Sato B; Hayakawa S; Ando H; Hayashi M; Isobe S; Okumura T; Hirashiki A; Takeshita K; Amano T; Uetani T; Yamada S; Murohara T
    Int J Cardiol; 2013 Jan; 162(2):123-8. PubMed ID: 21636151
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sex Differences in Nonculprit Coronary Plaque Microstructures on Frequency-Domain Optical Coherence Tomography in Acute Coronary Syndromes and Stable Coronary Artery Disease.
    Kataoka Y; Puri R; Hammadah M; Duggal B; Uno K; Kapadia SR; Tuzcu EM; Nissen SE; King P; Nicholls SJ
    Circ Cardiovasc Imaging; 2016 Aug; 9(8):. PubMed ID: 27511975
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plasma concentrations of molecular lipid species in relation to coronary plaque characteristics and cardiovascular outcome: Results of the ATHEROREMO-IVUS study.
    Cheng JM; Suoniemi M; Kardys I; Vihervaara T; de Boer SP; Akkerhuis KM; Sysi-Aho M; Ekroos K; Garcia-Garcia HM; Oemrawsingh RM; Regar E; Koenig W; Serruys PW; van Geuns RJ; Boersma E; Laaksonen R
    Atherosclerosis; 2015 Dec; 243(2):560-6. PubMed ID: 26523994
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Combined IVUS and NIRS detection of fibroatheromas: histopathological validation in human coronary arteries.
    Kang SJ; Mintz GS; Pu J; Sum ST; Madden SP; Burke AP; Xu K; Goldstein JA; Stone GW; Muller JE; Virmani R; Maehara A
    JACC Cardiovasc Imaging; 2015 Feb; 8(2):184-94. PubMed ID: 25577445
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Clinical and angiographic characteristics of patients likely to have vulnerable plaques: analysis from the PROSPECT study.
    Bourantas CV; Garcia-Garcia HM; Farooq V; Maehara A; Xu K; Généreux P; Diletti R; Muramatsu T; Fahy M; Weisz G; Stone GW; Serruys PW
    JACC Cardiovasc Imaging; 2013 Dec; 6(12):1263-72. PubMed ID: 24269259
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intracoronary Imaging of Vulnerable Plaque-From Clinical Research to Everyday Practice.
    Legutko J; Bryniarski KL; Kaluza GL; Roleder T; Pociask E; Kedhi E; Wojakowski W; Jang IK; Kleczynski P
    J Clin Med; 2022 Nov; 11(22):. PubMed ID: 36431116
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lipid-rich Plaques Detected by Near-infrared Spectroscopy Are More Frequently Exposed to High Shear Stress.
    Hartman EMJ; De Nisco G; Kok AM; Hoogendoorn A; Coenen A; Mastik F; Korteland SA; Nieman K; Gijsen FJH; van der Steen AFW; Daemen J; Wentzel JJ
    J Cardiovasc Transl Res; 2021 Jun; 14(3):416-425. PubMed ID: 33034862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.