BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35092310)

  • 1. Non-canonical bivalent H3K4me3K9me3 recognition by Spindlin1/C11orf84 complex.
    Du Y; Qian C
    Bioessays; 2022 Apr; 44(4):e2100229. PubMed ID: 35092310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural mechanism of bivalent histone H3K4me3K9me3 recognition by the Spindlin1/C11orf84 complex in rRNA transcription activation.
    Du Y; Yan Y; Xie S; Huang H; Wang X; Ng RK; Zhou MM; Qian C
    Nat Commun; 2021 Feb; 12(1):949. PubMed ID: 33574238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular basis for histone H3 "K4me3-K9me3/2" methylation pattern readout by Spindlin1.
    Zhao F; Liu Y; Su X; Lee JE; Song Y; Wang D; Ge K; Gao J; Zhang MQ; Li H
    J Biol Chem; 2020 Dec; 295(49):16877-16887. PubMed ID: 32994220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin remodeling and bivalent histone modifications in embryonic stem cells.
    Harikumar A; Meshorer E
    EMBO Rep; 2015 Dec; 16(12):1609-19. PubMed ID: 26553936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bivalent Histone Modifications and Development.
    Li F; Wan M; Zhang B; Peng Y; Zhou Y; Pi C; Xu X; Ye L; Zhou X; Zheng L
    Curr Stem Cell Res Ther; 2018; 13(2):83-90. PubMed ID: 28117006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding the function of bivalent chromatin in development and cancer.
    Kumar D; Cinghu S; Oldfield AJ; Yang P; Jothi R
    Genome Res; 2021 Dec; 31(12):2170-2184. PubMed ID: 34667120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bivalent chromatin: a developmental balancing act tipped in cancer.
    Glancy E; Choy N; Eckersley-Maslin MA
    Biochem Soc Trans; 2024 Feb; 52(1):217-229. PubMed ID: 38385532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation, functions and transmission of bivalent chromatin during mammalian development.
    Macrae TA; Fothergill-Robinson J; Ramalho-Santos M
    Nat Rev Mol Cell Biol; 2023 Jan; 24(1):6-26. PubMed ID: 36028557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bivalent histone modifications in early embryogenesis.
    Vastenhouw NL; Schier AF
    Curr Opin Cell Biol; 2012 Jun; 24(3):374-86. PubMed ID: 22513113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cold stress induces enhanced chromatin accessibility and bivalent histone modifications H3K4me3 and H3K27me3 of active genes in potato.
    Zeng Z; Zhang W; Marand AP; Zhu B; Buell CR; Jiang J
    Genome Biol; 2019 Jun; 20(1):123. PubMed ID: 31208436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin signature of embryonic pluripotency is established during genome activation.
    Vastenhouw NL; Zhang Y; Woods IG; Imam F; Regev A; Liu XS; Rinn J; Schier AF
    Nature; 2010 Apr; 464(7290):922-6. PubMed ID: 20336069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bivalent chromatin marks developmental regulatory genes in the mouse embryonic germline in vivo.
    Sachs M; Onodera C; Blaschke K; Ebata KT; Song JS; Ramalho-Santos M
    Cell Rep; 2013 Jun; 3(6):1777-84. PubMed ID: 23727241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide analysis of bivalent histone modifications during Drosophila embryogenesis.
    Cheng Q; Xie H
    Genesis; 2022 Dec; 60(10-12):e23502. PubMed ID: 36125264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNAs of the miR-290-295 Family Maintain Bivalency in Mouse Embryonic Stem Cells.
    Graham B; Marcais A; Dharmalingam G; Carroll T; Kanellopoulou C; Graumann J; Nesterova TB; Bermange A; Brazauskas P; Xella B; Kriaucionis S; Higgs DR; Brockdorff N; Mann M; Fisher AG; Merkenschlager M
    Stem Cell Reports; 2016 May; 6(5):635-642. PubMed ID: 27150236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. H3K4/H3K9me3 Bivalent Chromatin Domains Targeted by Lineage-Specific DNA Methylation Pauses Adipocyte Differentiation.
    Matsumura Y; Nakaki R; Inagaki T; Yoshida A; Kano Y; Kimura H; Tanaka T; Tsutsumi S; Nakao M; Doi T; Fukami K; Osborne TF; Kodama T; Aburatani H; Sakai J
    Mol Cell; 2015 Nov; 60(4):584-96. PubMed ID: 26590716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A double take on bivalent promoters.
    Voigt P; Tee WW; Reinberg D
    Genes Dev; 2013 Jun; 27(12):1318-38. PubMed ID: 23788621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin regulation Tip(60)s the balance in embryonic stem cell self-renewal.
    Fazzio TG; Huff JT; Panning B
    Cell Cycle; 2008 Nov; 7(21):3302-6. PubMed ID: 18948739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic regulation of epigenomic landscapes during hematopoiesis.
    Abraham BJ; Cui K; Tang Q; Zhao K
    BMC Genomics; 2013 Mar; 14():193. PubMed ID: 23510235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bivalent Regulation and Related Mechanisms of H3K4/27/9me3 in Stem Cells.
    Sun H; Wang Y; Wang Y; Ji F; Wang A; Yang M; He X; Li L
    Stem Cell Rev Rep; 2022 Jan; 18(1):165-178. PubMed ID: 34417934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of promoter bivalency and RNAP II pausing in mouse stem and differentiated cells.
    Mantsoki A; Devailly G; Joshi A
    BMC Dev Biol; 2018 Feb; 18(1):2. PubMed ID: 29458328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.