BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 35092351)

  • 1. Highly Stretchable High-Performance Silicon Nanowire Field Effect Transistors Integrated on Elastomer Substrates.
    Song X; Zhang T; Wu L; Hu R; Qian W; Liu Z; Wang J; Shi Y; Xu J; Chen K; Yu L
    Adv Sci (Weinh); 2022 Mar; 9(9):e2105623. PubMed ID: 35092351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deterministic Single-Row-Droplet Catalyst Formation for Uniform Growth Integration of High-Density Silicon Nanowires.
    Cheng Y; Liu Z; Wang J; Xu J; Yu L
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38683183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Silicon Nanowire Field Effect Transistor (SiNW-FET) Biosensor with High Sensitivity.
    Li H; Li D; Chen H; Yue X; Fan K; Dong L; Wang G
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terrace-confined guided growth of high-density ultrathin silicon nanowire array for large area electronics.
    Xu S; Hu R; Wang J; Li Z; Xu J; Chen K; Yu L
    Nanotechnology; 2021 Apr; 32(26):. PubMed ID: 33752187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superfast Growth Dynamics of High-Quality Silicon Nanowires on Polymer Films via Self-Selected Laser-Droplet-Heating.
    Zhang T; Hu R; Zhang S; Liu Z; Wang J; Xu J; Chen K; Yu L
    Nano Lett; 2021 Jan; 21(1):569-576. PubMed ID: 33350839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolithic Integration of Silicon Nanowire Networks as a Soft Wafer for Highly Stretchable and Transparent Electronics.
    Dong T; Sun Y; Zhu Z; Wu X; Wang J; Shi Y; Xu J; Chen K; Yu L
    Nano Lett; 2019 Sep; 19(9):6235-6243. PubMed ID: 31415178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designable Integration of Silicide Nanowire Springs as Ultra-Compact and Stretchable Electronic Interconnections.
    Yuan R; Qian W; Liu Z; Wang J; Xu J; Chen K; Yu L
    Small; 2022 Feb; 18(6):e2104690. PubMed ID: 34859580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Si nanowire/amorphous silicon FETs for large-area image sensor arrays.
    Wong WS; Raychaudhuri S; Lujan R; Sambandan S; Street RA
    Nano Lett; 2011 Jun; 11(6):2214-8. PubMed ID: 21591655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostripe-Confined Catalyst Formation for Uniform Growth of Ultrathin Silicon Nanowires.
    Cheng Y; Gan X; Liu Z; Wang J; Xu J; Chen K; Yu L
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor.
    Li BR; Chen CW; Yang WL; Lin TY; Pan CY; Chen YT
    Biosens Bioelectron; 2013 Jul; 45():252-9. PubMed ID: 23500372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon Nanowire Field Effect Transistor Sensors with Minimal Sensor-to-Sensor Variations and Enhanced Sensing Characteristics.
    Zafar S; D'Emic C; Jagtiani A; Kratschmer E; Miao X; Zhu Y; Mo R; Sosa N; Hamann H; Shahidi G; Riel H
    ACS Nano; 2018 Jul; 12(7):6577-6587. PubMed ID: 29932634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Process Variability in Top-Down Fabrication of Silicon Nanowire-Based Biosensor Arrays.
    Tintelott M; Pachauri V; Ingebrandt S; Vu XT
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly end-doped silicon nanowires for field-effect transistors on flexible substrates.
    Celle C; Carella A; Mariolle D; Chevalier N; Rouvière E; Simonato JP
    Nanoscale; 2010 May; 2(5):677-80. PubMed ID: 20648308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unexpected phosphorus doping routine of planar silicon nanowires for integrating CMOS logics.
    Sun Y; Qian W; Liu S; Dong T; Wang J; Xu J; Chen K; Yu L
    Nanoscale; 2021 Sep; 13(35):15031-15037. PubMed ID: 34533152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-speed and large-scale intrinsically stretchable integrated circuits.
    Zhong D; Wu C; Jiang Y; Yuan Y; Kim MG; Nishio Y; Shih CC; Wang W; Lai JC; Ji X; Gao TZ; Wang YX; Xu C; Zheng Y; Yu Z; Gong H; Matsuhisa N; Zhao C; Lei Y; Liu D; Zhang S; Ochiai Y; Liu S; Wei S; Tok JB; Bao Z
    Nature; 2024 Mar; 627(8003):313-320. PubMed ID: 38480964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ultra-lightweight design for imperceptible plastic electronics.
    Kaltenbrunner M; Sekitani T; Reeder J; Yokota T; Kuribara K; Tokuhara T; Drack M; Schwödiauer R; Graz I; Bauer-Gogonea S; Bauer S; Someya T
    Nature; 2013 Jul; 499(7459):458-63. PubMed ID: 23887430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved silicon nanowire field-effect transistors for fast protein-protein interaction screening.
    Lin TY; Li BR; Tsai ST; Chen CW; Chen CH; Chen YT; Pan CY
    Lab Chip; 2013 Feb; 13(4):676-84. PubMed ID: 23235921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors.
    Gao A; Lu N; Wang Y; Dai P; Li T; Gao X; Wang Y; Fan C
    Nano Lett; 2012 Oct; 12(10):5262-8. PubMed ID: 22985088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile 3D integration of Si nanowires on Bosch-etched sidewalls for stacked channel transistors.
    Hu R; Ma H; Yin H; Xu J; Chen K; Yu L
    Nanoscale; 2020 Jan; 12(4):2787-2792. PubMed ID: 31960875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-sensitive nucleic acids detection with electrical nanosensors based on CMOS-compatible silicon nanowire field-effect transistors.
    Lu N; Gao A; Dai P; Li T; Wang Y; Gao X; Song S; Fan C; Wang Y
    Methods; 2013 Oct; 63(3):212-8. PubMed ID: 23886908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.