BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 35092753)

  • 1. Biochar production via pyrolysis of citrus peel fruit waste as a potential usage as solid biofuel.
    Selvarajoo A; Wong YL; Khoo KS; Chen WH; Show PL
    Chemosphere; 2022 May; 294():133671. PubMed ID: 35092753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochar and bio-oil fuel properties from nickel nanoparticles assisted pyrolysis of cassava peel.
    Egbosiuba TC
    Heliyon; 2022 Aug; 8(8):e10114. PubMed ID: 36042740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valorization of underutilized waste biomass from invasive species to produce biochar for energy and other value-added applications.
    Ahmed A; Abu Bakar MS; Hamdani R; Park YK; Lam SS; Sukri RS; Hussain M; Majeed K; Phusunti N; Jamil F; Aslam M
    Environ Res; 2020 Jul; 186():109596. PubMed ID: 32361527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.).
    Angin D; Sensöz S
    Int J Phytoremediation; 2014; 16(7-12):684-93. PubMed ID: 24933878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and Characterization of Biochars Obtained from Biomasses for Combustible Briquette Applications.
    Hadey C; Allouch M; Alami M; Boukhlifi F; Loulidi I
    ScientificWorldJournal; 2022; 2022():2554475. PubMed ID: 36523325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction model for biochar energy potential based on biomass properties and pyrolysis conditions derived from rough set machine learning.
    Tang JY; Chung BYH; Ang JC; Chong JW; Tan RR; Aviso KB; Chemmangattuvalappil NG; Thangalazhy-Gopakumar S
    Environ Technol; 2024 Jun; 45(15):2908-2922. PubMed ID: 36927324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable valorization of macroalgae residual biomass, optimization of pyrolysis parameters and life cycle assessment.
    Alam SN; Singh B; Guldhe A; Raghuvanshi S; Sangwan KS
    Sci Total Environ; 2024 Apr; 919():170797. PubMed ID: 38342457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions.
    Woolf D; Lehmann J; Fisher EM; Angenent LT
    Environ Sci Technol; 2014 Jun; 48(11):6492-9. PubMed ID: 24787482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar.
    Tran HN; You SJ; Chao HP
    Waste Manag Res; 2016 Feb; 34(2):129-38. PubMed ID: 26608900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of pyrolysis parameters on physicochemical properties of biochar and bio-oil and application in asphalt.
    Zhou X; Moghaddam TB; Chen M; Wu S; Zhang Y; Zhang X; Adhikari S; Zhang X
    Sci Total Environ; 2021 Aug; 780():146448. PubMed ID: 33773351
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Acharya S; Kishore N
    RSC Adv; 2022 Nov; 12(50):32708-32721. PubMed ID: 36425707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards a sustainable waste-to-energy pathway to pequi biomass residues: Biochar, syngas, and biodiesel analysis.
    Ghesti GF; Silveira EA; Guimarães MG; Evaristo RBW; Costa M
    Waste Manag; 2022 Apr; 143():144-156. PubMed ID: 35255448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Obtaining bio-oil and activated carbon from waste pomegranate peels by pyrolysis.
    Alagöz O; Yılmaz N; Dilek M
    Environ Sci Pollut Res Int; 2023 Nov; 30(54):115037-115049. PubMed ID: 37880403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waste-to-energy: Co-pyrolysis of potato peel and macroalgae for biofuels and biochemicals.
    Fardi Z; Shahbeik H; Nosrati M; Motamedian E; Tabatabaei M; Aghbashlo M
    Environ Res; 2024 Feb; 242():117614. PubMed ID: 37996005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of pyrolysis conditions on orange peel biochar physicochemical properties for sandy soil.
    Abdelaal A; Pradhan S; AlNouss A; Tong Y; Al-Ansari T; McKay G; Mackey HR
    Waste Manag Res; 2021 Jul; 39(7):995-1004. PubMed ID: 33327900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Banana pseudo-stem biochar derived from slow and fast pyrolysis process.
    Abdullah N; Mohd Taib R; Mohamad Aziz NS; Omar MR; Md Disa N
    Heliyon; 2023 Jan; 9(1):e12940. PubMed ID: 36704268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production and characterization of chars from cherry pulp via pyrolysis.
    Pehlivan E; Özbay N; Yargıç AS; Şahin RZ
    J Environ Manage; 2017 Dec; 203(Pt 3):1017-1025. PubMed ID: 28495055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental process parameters optimization and in-depth product characterizations for teak sawdust pyrolysis.
    Gupta GK; Gupta PK; Mondal MK
    Waste Manag; 2019 Mar; 87():499-511. PubMed ID: 31109550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrolysis production of fruit peel biochar for potential use in treatment of palm oil mill effluent.
    Lam SS; Liew RK; Cheng CK; Rasit N; Ooi CK; Ma NL; Ng JH; Lam WH; Chong CT; Chase HA
    J Environ Manage; 2018 May; 213():400-408. PubMed ID: 29505995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermogravimetric, thermochemical, and infrared spectral characterization of feedstocks and biochar derived at different pyrolysis temperatures.
    Li S; Chen G
    Waste Manag; 2018 Aug; 78():198-207. PubMed ID: 32559905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.