These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 35093341)
1. Developing a pan-European high-resolution groundwater recharge map - Combining satellite data and national survey data using machine learning. Martinsen G; Bessiere H; Caballero Y; Koch J; Collados-Lara AJ; Mansour M; Sallasmaa O; Pulido-Velazquez D; Williams NH; Zaadnoordijk WJ; Stisen S Sci Total Environ; 2022 May; 822():153464. PubMed ID: 35093341 [TBL] [Abstract][Full Text] [Related]
2. A global-scale dataset of direct natural groundwater recharge rates: A review of variables, processes and relationships. Moeck C; Grech-Cumbo N; Podgorski J; Bretzler A; Gurdak JJ; Berg M; Schirmer M Sci Total Environ; 2020 May; 717():137042. PubMed ID: 32062252 [TBL] [Abstract][Full Text] [Related]
3. Modelling of recharge and pollutant fluxes to urban groundwaters. Thomas A; Tellam J Sci Total Environ; 2006 May; 360(1-3):158-79. PubMed ID: 16325236 [TBL] [Abstract][Full Text] [Related]
4. The implications of climate change on freshwater resources in the arid and semiarid Mediterranean environments using hydrological modeling, GIS tools, and remote sensing. Oroud IM Environ Monit Assess; 2024 Sep; 196(10):979. PubMed ID: 39320588 [TBL] [Abstract][Full Text] [Related]
5. Impact of land-use dynamics and climate change scenarios on Groundwater recharge in the case of Anger watershed, Ethiopia. Chuko FW; Abdissa AG Heliyon; 2023 Aug; 9(8):e18467. PubMed ID: 37554792 [TBL] [Abstract][Full Text] [Related]
6. CMBEAR: Python-Based Recharge Estimator Using the Chloride Mass Balance Method in Australia. Irvine DJ; Cartwright I Ground Water; 2022 May; 60(3):418-425. PubMed ID: 34919277 [TBL] [Abstract][Full Text] [Related]
7. Estimation of groundwater recharge via deuterium labelling in the semi-arid Cuvelai-Etosha Basin, Namibia. Beyer M; Gaj M; Hamutoko JT; Koeniger P; Wanke H; Himmelsbach T Isotopes Environ Health Stud; 2015; 51(4):533-52. PubMed ID: 26414647 [TBL] [Abstract][Full Text] [Related]
8. Proxy modeling approach to evaluate groundwater recharge potentiality zones in the data scarce area of upper Blue Nile Basin, Ethiopia. Tegegne AM; Lohani TK; Eshete AA Environ Monit Assess; 2023 May; 195(6):726. PubMed ID: 37227530 [TBL] [Abstract][Full Text] [Related]
9. Simulation of future groundwater recharge using a climate model ensemble and SAR-image based soil parameter distributions - A case study in an intensively-used Mediterranean catchment. Herrmann F; Baghdadi N; Blaschek M; Deidda R; Duttmann R; La Jeunesse I; Sellami H; Vereecken H; Wendland F Sci Total Environ; 2016 Feb; 543(Pt B):889-905. PubMed ID: 26190446 [TBL] [Abstract][Full Text] [Related]
10. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Cuthbert MO; Taylor RG; Favreau G; Todd MC; Shamsudduha M; Villholth KG; MacDonald AM; Scanlon BR; Kotchoni DOV; Vouillamoz JM; Lawson FMA; Adjomayi PA; Kashaigili J; Seddon D; Sorensen JPR; Ebrahim GY; Owor M; Nyenje PM; Nazoumou Y; Goni I; Ousmane BI; Sibanda T; Ascott MJ; Macdonald DMJ; Agyekum W; Koussoubé Y; Wanke H; Kim H; Wada Y; Lo MH; Oki T; Kukuric N Nature; 2019 Aug; 572(7768):230-234. PubMed ID: 31391559 [TBL] [Abstract][Full Text] [Related]
11. Soil Conservation Service-Curve Number method-based historical analysis of long-term (1936-2016) temporal evolution of city-scale potential natural groundwater recharge from precipitation: case study Algiers (Algeria). Boukhemacha MA Environ Monit Assess; 2023 Sep; 195(10):1168. PubMed ID: 37682383 [TBL] [Abstract][Full Text] [Related]
12. Integrating soil water and tracer balances, numerical modelling and GIS tools to estimate regional groundwater recharge: Application to the Alcadozo Aquifer System (SE Spain). Hornero J; Manzano M; Ortega L; Custodio E Sci Total Environ; 2016 Oct; 568():415-432. PubMed ID: 27310533 [TBL] [Abstract][Full Text] [Related]
13. Improved Recharge Estimation from Portable, Low-Cost Weather Stations. Holländer HM; Wang Z; Assefa KA; Woodbury AD Ground Water; 2016 Mar; 54(2):243-54. PubMed ID: 26011672 [TBL] [Abstract][Full Text] [Related]
14. Multi-source machine learning and spaceborne remote sensing data accurately predict three-dimensional soil moisture in an in-service uranium disposal cell. Jarchow CJ; Du J; Kimball JS; Kuhlman A; Steckley D J Environ Manage; 2024 Oct; 369():122254. PubMed ID: 39217907 [TBL] [Abstract][Full Text] [Related]
15. Ground truthing global-scale model estimates of groundwater recharge across Africa. West C; Reinecke R; Rosolem R; MacDonald AM; Cuthbert MO; Wagener T Sci Total Environ; 2023 Feb; 858(Pt 3):159765. PubMed ID: 36309251 [TBL] [Abstract][Full Text] [Related]
16. Incorporating Snowmelt into Daily Estimates of Recharge Using a State-Space Model of Infiltration. Shapiro AM; Day-Lewis FD; Kappel WM; Williams JH Ground Water; 2022 Nov; 60(6):721-746. PubMed ID: 35524981 [TBL] [Abstract][Full Text] [Related]
17. Impact of Climate-Indicators on Continental-Scale Potential Groundwater Recharge in Africa. Nasta P; Gates JB; Wada Y Hydrol Process; 2016 Sep; 30(19):3420-3433. PubMed ID: 30377387 [TBL] [Abstract][Full Text] [Related]