These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35093593)

  • 1. A well-supported nuclear phylogeny of Poaceae and implications for the evolution of C
    Huang W; Zhang L; Columbus JT; Hu Y; Zhao Y; Tang L; Guo Z; Chen W; McKain M; Bartlett M; Huang CH; Li DZ; Ge S; Ma H
    Mol Plant; 2022 Apr; 15(4):755-777. PubMed ID: 35093593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogeny and photosynthesis of the grass tribe Paniceae.
    Washburn JD; Schnable JC; Davidse G; Pires JC
    Am J Bot; 2015 Sep; 102(9):1493-505. PubMed ID: 26373976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic and Transcriptomic Insights into the Evolution of C4 Photosynthesis in Grasses.
    Lyu H; Yim WC; Yu Q
    Genome Biol Evol; 2024 Aug; 16(8):. PubMed ID: 39066653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-locus analysis of phylogenetic relationships within grass subfamily Pooideae (Poaceae) inferred from sequences of nuclear single copy gene regions compared with plastid DNA.
    Hochbach A; Schneider J; Röser M
    Mol Phylogenet Evol; 2015 Jun; 87():14-27. PubMed ID: 25804934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylotranscriptomics Resolves the Phylogeny of Pooideae and Uncovers Factors for Their Adaptive Evolution.
    Zhang L; Zhu X; Zhao Y; Guo J; Zhang T; Huang W; Huang J; Hu Y; Huang CH; Ma H
    Mol Biol Evol; 2022 Feb; 39(2):. PubMed ID: 35134207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses.
    Wang X; Gowik U; Tang H; Bowers JE; Westhoff P; Paterson AH
    Genome Biol; 2009; 10(6):R68. PubMed ID: 19549309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The draft genome of the C
    Studer AJ; Schnable JC; Weissmann S; Kolbe AR; McKain MR; Shao Y; Cousins AB; Kellogg EA; Brutnell TP
    Genome Biol; 2016 Oct; 17(1):223. PubMed ID: 27793170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From museums to genomics: old herbarium specimens shed light on a C3 to C4 transition.
    Besnard G; Christin PA; Malé PJ; Lhuillier E; Lauzeral C; Coissac E; Vorontsova MS
    J Exp Bot; 2014 Dec; 65(22):6711-21. PubMed ID: 25258360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of Rosaceae Fruit Types Based on Nuclear Phylogeny in the Context of Geological Times and Genome Duplication.
    Xiang Y; Huang CH; Hu Y; Wen J; Li S; Yi T; Chen H; Xiang J; Ma H
    Mol Biol Evol; 2017 Feb; 34(2):262-281. PubMed ID: 27856652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C4 Photosynthesis evolved in grasses via parallel adaptive genetic changes.
    Christin PA; Salamin N; Savolainen V; Duvall MR; Besnard G
    Curr Biol; 2007 Jul; 17(14):1241-7. PubMed ID: 17614282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation.
    Linder HP; Lehmann CER; Archibald S; Osborne CP; Richardson DM
    Biol Rev Camb Philos Soc; 2018 May; 93(2):1125-1144. PubMed ID: 29230921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary history of chloridoid grasses estimated from 122 nuclear loci.
    Fisher AE; Hasenstab KM; Bell HL; Blaine E; Ingram AL; Columbus JT
    Mol Phylogenet Evol; 2016 Dec; 105():1-14. PubMed ID: 27554759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive phylogenetic analyses of Orchidaceae using nuclear genes and evolutionary insights into epiphytism.
    Zhang G; Hu Y; Huang MZ; Huang WC; Liu DK; Zhang D; Hu H; Downing JL; Liu ZJ; Ma H
    J Integr Plant Biol; 2023 May; 65(5):1204-1225. PubMed ID: 36738233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo transcriptome assemblies of C
    Prochetto S; Studer AJ; Reinheimer R
    BMC Genomics; 2023 Feb; 24(1):64. PubMed ID: 36747121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pervasive survival of expressed mitochondrial rps14 pseudogenes in grasses and their relatives for 80 million years following three functional transfers to the nucleus.
    Ong HC; Palmer JD
    BMC Evol Biol; 2006 Jul; 6():55. PubMed ID: 16842621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond RuBisCO: convergent molecular evolution of multiple chloroplast genes in C
    Casola C; Li J
    PeerJ; 2022; 10():e12791. PubMed ID: 35127287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grass plastomes reveal unexpected paraphyly with endemic species of Micrairoideae from India and new haplotype markers in Arundinoideae.
    Duvall MR; Yadav SR; Burke SV; Wysocki WP
    Am J Bot; 2017 Feb; 104(2):286-295. PubMed ID: 28183834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross species selection scans identify components of C4 photosynthesis in the grasses.
    Huang P; Studer AJ; Schnable JC; Kellogg EA; Brutnell TP
    J Exp Bot; 2017 Jan; 68(2):127-135. PubMed ID: 27436281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversification of C(4) grasses (Poaceae) does not coincide with their ecological dominance.
    Bouchenak-Khelladi Y; Slingsby JA; Verboom GA; Bond WJ
    Am J Bot; 2014 Feb; 101(2):300-7. PubMed ID: 24509796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyphyly of Arundinoideae (Poaceae) and evolution of the twisted geniculate lemma awn.
    Teisher JK; McKain MR; Schaal BA; Kellogg EA
    Ann Bot; 2017 Nov; 120(5):725-738. PubMed ID: 28645142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.