These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 35093850)
1. Estimation of the probability of epidemic fade-out from multiple outbreak data. Alahakoon P; McCaw JM; Taylor PG Epidemics; 2022 Mar; 38():100539. PubMed ID: 35093850 [TBL] [Abstract][Full Text] [Related]
2. Improving estimates of waning immunity rates in stochastic SIRS models with a hierarchical framework. Alahakoon P; McCaw JM; Taylor PG Infect Dis Model; 2023 Dec; 8(4):1127-1137. PubMed ID: 37886740 [TBL] [Abstract][Full Text] [Related]
3. The probability of epidemic fade-out is non-monotonic in transmission rate for the Markovian SIR model with demography. Ballard PG; Bean NG; Ross JV J Theor Biol; 2016 Mar; 393():170-8. PubMed ID: 26796227 [TBL] [Abstract][Full Text] [Related]
4. Intervention to maximise the probability of epidemic fade-out. Ballard PG; Bean NG; Ross JV Math Biosci; 2017 Nov; 293():1-10. PubMed ID: 28804021 [TBL] [Abstract][Full Text] [Related]
5. Probability of Disease Extinction or Outbreak in a Stochastic Epidemic Model for West Nile Virus Dynamics in Birds. Maliyoni M Acta Biotheor; 2021 Jun; 69(2):91-116. PubMed ID: 32889647 [TBL] [Abstract][Full Text] [Related]
6. Stochastic epidemics: the probability of extinction of an infectious disease at the end of a major outbreak. van Herwaarden OA J Math Biol; 1997 Aug; 35(7):793-813. PubMed ID: 9269737 [TBL] [Abstract][Full Text] [Related]
7. A stochastic SIS epidemic with demography: initial stages and time to extinction. Andersson P; Lindenstrand D J Math Biol; 2011 Mar; 62(3):333-48. PubMed ID: 20309550 [TBL] [Abstract][Full Text] [Related]
8. The probability of epidemic burnout in the stochastic SIR model with vital dynamics. Parsons TL; Bolker BM; Dushoff J; Earn DJD Proc Natl Acad Sci U S A; 2024 Jan; 121(5):e2313708120. PubMed ID: 38277438 [TBL] [Abstract][Full Text] [Related]
9. Stochastic models of infectious diseases in a periodic environment with application to cholera epidemics. Allen LJS; Wang X J Math Biol; 2021 Apr; 82(6):48. PubMed ID: 33830353 [TBL] [Abstract][Full Text] [Related]
10. Extinction thresholds in deterministic and stochastic epidemic models. Allen LJ; Lahodny GE J Biol Dyn; 2012; 6():590-611. PubMed ID: 22873607 [TBL] [Abstract][Full Text] [Related]
11. A Comparison of Deterministic and Stochastic Plant-Vector-Virus Models Based on Probability of Disease Extinction and Outbreak. Maity S; Mandal PS Bull Math Biol; 2022 Feb; 84(3):41. PubMed ID: 35150332 [TBL] [Abstract][Full Text] [Related]
12. Probability of a disease outbreak in stochastic multipatch epidemic models. Lahodny GE; Allen LJ Bull Math Biol; 2013 Jul; 75(7):1157-80. PubMed ID: 23666483 [TBL] [Abstract][Full Text] [Related]
13. A scaling analysis of measles epidemics in a small population. Rhodes CJ; Anderson RM Philos Trans R Soc Lond B Biol Sci; 1996 Dec; 351(1348):1679-88. PubMed ID: 9004320 [TBL] [Abstract][Full Text] [Related]
14. Stochastic epidemic metapopulation models on networks: SIS dynamics and control strategies. Krause AL; Kurowski L; Yawar K; Van Gorder RA J Theor Biol; 2018 Jul; 449():35-52. PubMed ID: 29673907 [TBL] [Abstract][Full Text] [Related]
15. Deterministic and stochastic models for the epidemic dynamics of COVID-19 in Wuhan, China. Olabode D; Culp J; Fisher A; Tower A; Hull-Nye D; Wang X Math Biosci Eng; 2021 Jan; 18(1):950-967. PubMed ID: 33525127 [TBL] [Abstract][Full Text] [Related]
16. A stochastic model for extinction and recurrence of epidemics: estimation and inference for measles outbreaks. Finkenstädt BF; Bjørnstad ON; Grenfell BT Biostatistics; 2002 Dec; 3(4):493-510. PubMed ID: 12933594 [TBL] [Abstract][Full Text] [Related]
17. A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence. Maliyoni M; Chirove F; Gaff HD; Govinder KS Bull Math Biol; 2017 Sep; 79(9):1999-2021. PubMed ID: 28707219 [TBL] [Abstract][Full Text] [Related]
18. Novel moment closure approximations in stochastic epidemics. Krishnarajah I; Cook A; Marion G; Gibson G Bull Math Biol; 2005 Jul; 67(4):855-73. PubMed ID: 15893556 [TBL] [Abstract][Full Text] [Related]
19. Extinction pathways and outbreak vulnerability in a stochastic Ebola model. Nieddu GT; Billings L; Kaufman JH; Forgoston E; Bianco S J R Soc Interface; 2017 Feb; 14(127):. PubMed ID: 28202592 [TBL] [Abstract][Full Text] [Related]
20. Dynamics analysis of a stochastic SIRS epidemic model with nonlinear incidence rate and transfer from infectious to susceptible. Wang YM; Liu GR Math Biosci Eng; 2019 Jun; 16(5):6047-6070. PubMed ID: 31499752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]