These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 35093850)
21. Branching process approach for epidemics in dynamic partnership network. Lashari AA; Trapman P J Math Biol; 2018 Jan; 76(1-2):265-294. PubMed ID: 28573467 [TBL] [Abstract][Full Text] [Related]
22. A direct comparison of methods for assessing the threat from emerging infectious diseases in seasonally varying environments. Kaye AR; Hart WS; Bromiley J; Iwami S; Thompson RN J Theor Biol; 2022 Sep; 548():111195. PubMed ID: 35716723 [TBL] [Abstract][Full Text] [Related]
23. Precise Estimates of Persistence Time for SIS Infections in Heterogeneous Populations. Clancy D Bull Math Biol; 2018 Nov; 80(11):2871-2896. PubMed ID: 30206808 [TBL] [Abstract][Full Text] [Related]
24. Probabilistic predictions of SIS epidemics on networks based on population-level observations. Zerenner T; Di Lauro F; Dashti M; Berthouze L; Kiss IZ Math Biosci; 2022 Aug; 350():108854. PubMed ID: 35659615 [TBL] [Abstract][Full Text] [Related]
25. Deterministic epidemic models overestimate the basic reproduction number of observed outbreaks. Ali W; Overton CE; Wilkinson RR; Sharkey KJ Infect Dis Model; 2024 Sep; 9(3):680-688. PubMed ID: 38638338 [TBL] [Abstract][Full Text] [Related]
26. A two-stage model for the SIR outbreak: accounting for the discrete and stochastic nature of the epidemic at the initial contamination stage. Sazonov I; Kelbert M; Gravenor MB Math Biosci; 2011 Dec; 234(2):108-17. PubMed ID: 21968464 [TBL] [Abstract][Full Text] [Related]
27. A stochastic SIR model on a graph with epidemiological and population dynamics occurring over the same time scale. Montagnon P J Math Biol; 2019 Jul; 79(1):31-62. PubMed ID: 30937531 [TBL] [Abstract][Full Text] [Related]
28. Predictability in a highly stochastic system: final size of measles epidemics in small populations. Caudron Q; Mahmud AS; Metcalf CJ; Gottfreðsson M; Viboud C; Cliff AD; Grenfell BT J R Soc Interface; 2015 Jan; 12(102):20141125. PubMed ID: 25411411 [TBL] [Abstract][Full Text] [Related]
29. A tutorial introduction to Bayesian inference for stochastic epidemic models using Approximate Bayesian Computation. Kypraios T; Neal P; Prangle D Math Biosci; 2017 May; 287():42-53. PubMed ID: 27444577 [TBL] [Abstract][Full Text] [Related]
30. WKB theory of epidemic fade-out in stochastic populations. Meerson B; Sasorov PV Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041130. PubMed ID: 19905296 [TBL] [Abstract][Full Text] [Related]
31. Network-based analysis of stochastic SIR epidemic models with random and proportionate mixing. Kenah E; Robins JM J Theor Biol; 2007 Dec; 249(4):706-22. PubMed ID: 17950362 [TBL] [Abstract][Full Text] [Related]
32. Modelling under-reporting in epidemics. Gamado KM; Streftaris G; Zachary S J Math Biol; 2014 Sep; 69(3):737-65. PubMed ID: 23942791 [TBL] [Abstract][Full Text] [Related]
33. Detecting changes in the transmission rate of a stochastic epidemic model. Huang J; Morsomme R; Dunson D; Xu J Stat Med; 2024 May; 43(10):1867-1882. PubMed ID: 38409877 [TBL] [Abstract][Full Text] [Related]
34. Dynamics of the COVID-19 epidemic in Ireland under mitigation. Cazelles B; Nguyen-Van-Yen B; Champagne C; Comiskey C BMC Infect Dis; 2021 Aug; 21(1):735. PubMed ID: 34344318 [TBL] [Abstract][Full Text] [Related]
35. An epidemic model with short-lived mixing groups. Ball F; Neal P J Math Biol; 2022 Oct; 85(6-7):63. PubMed ID: 36315292 [TBL] [Abstract][Full Text] [Related]
36. Will an outbreak exceed available resources for control? Estimating the risk from invading pathogens using practical definitions of a severe epidemic. Thompson RN; Gilligan CA; Cunniffe NJ J R Soc Interface; 2020 Nov; 17(172):20200690. PubMed ID: 33171074 [TBL] [Abstract][Full Text] [Related]
38. Evaluating different epidemiological models with the identical basic reproduction number ℛ Bai F J Biol Dyn; 2020 Dec; 14(1):849-870. PubMed ID: 33252319 [TBL] [Abstract][Full Text] [Related]
39. A linear noise approximation for stochastic epidemic models fit to partially observed incidence counts. Fintzi J; Wakefield J; Minin VN Biometrics; 2022 Dec; 78(4):1530-1541. PubMed ID: 34374071 [TBL] [Abstract][Full Text] [Related]
40. Reproduction numbers and thresholds in stochastic epidemic models. I. Homogeneous populations. Jacquez JA; O'Neill P Math Biosci; 1991 Dec; 107(2):161-86. PubMed ID: 1806112 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]