These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 35093854)
1. Quantitative structure retention relationship (QSRR) modelling for Analytes' retention prediction in LC-HRMS by applying different Machine Learning algorithms and evaluating their performance. Liapikos T; Zisi C; Kodra D; Kademoglou K; Diamantidou D; Begou O; Pappa-Louisi A; Theodoridis G J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Feb; 1191():123132. PubMed ID: 35093854 [TBL] [Abstract][Full Text] [Related]
2. Performance comparison of nonlinear and linear regression algorithms coupled with different attribute selection methods for quantitative structure - retention relationships modelling in micellar liquid chromatography. Krmar J; Vukićević M; Kovačević A; Protić A; Zečević M; Otašević B J Chromatogr A; 2020 Jul; 1623():461146. PubMed ID: 32505269 [TBL] [Abstract][Full Text] [Related]
3. Quantitative structure-retention relationships models for prediction of high performance liquid chromatography retention time of small molecules: endogenous metabolites and banned compounds. Goryński K; Bojko B; Nowaczyk A; Buciński A; Pawliszyn J; Kaliszan R Anal Chim Acta; 2013 Oct; 797():13-9. PubMed ID: 24050665 [TBL] [Abstract][Full Text] [Related]
4. Retention prediction of low molecular weight anions in ion chromatography based on quantitative structure-retention relationships applied to the linear solvent strength model. Park SH; Haddad PR; Talebi M; Tyteca E; Amos RI; Szucs R; Dolan JW; Pohl CA J Chromatogr A; 2017 Feb; 1486():68-75. PubMed ID: 28057331 [TBL] [Abstract][Full Text] [Related]
5. Cross-column density functional theory-based quantitative structure-retention relationship model development powered by machine learning. Mazraedoost S; Žuvela P; Ulenberg S; Bączek T; Liu JJ Anal Bioanal Chem; 2024 May; 416(12):2951-2968. PubMed ID: 38507043 [TBL] [Abstract][Full Text] [Related]
6. Prediction of pesticide retention time in reversed-phase liquid chromatography using quantitative-structure retention relationship models: A comparative study of seven molecular descriptors datasets. Parinet J Chemosphere; 2021 Jul; 275():130036. PubMed ID: 33676277 [TBL] [Abstract][Full Text] [Related]
7. Prediction of retention in hydrophilic interaction liquid chromatography using solute molecular descriptors based on chemical structures. Taraji M; Haddad PR; Amos RI; Talebi M; Szucs R; Dolan JW; Pohl CA J Chromatogr A; 2017 Feb; 1486():59-67. PubMed ID: 28049585 [TBL] [Abstract][Full Text] [Related]
8. Towards a chromatographic similarity index to establish localised quantitative structure-retention relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography. Park SH; Talebi M; Amos RIJ; Tyteca E; Haddad PR; Szucs R; Pohl CA; Dolan JW J Chromatogr A; 2017 Nov; 1523():173-182. PubMed ID: 28291517 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive and Empirical Evaluation of Machine Learning Algorithms for Small Molecule LC Retention Time Prediction. Bouwmeester R; Martens L; Degroeve S Anal Chem; 2019 Mar; 91(5):3694-3703. PubMed ID: 30702864 [TBL] [Abstract][Full Text] [Related]
10. Exploiting non-linear relationships between retention time and molecular structure of peptides originating from proteomes and comparing three multivariate approaches. Žuvela P; Macur K; Jay Liu J; Bączek T J Pharm Biomed Anal; 2016 Aug; 127():94-100. PubMed ID: 26856456 [TBL] [Abstract][Full Text] [Related]
11. Prediction of liquid chromatographic retention time using quantitative structure-retention relationships to assist non-targeted identification of unknown metabolites of phthalates in human urine with high-resolution mass spectrometry. Meshref S; Li Y; Feng YL J Chromatogr A; 2020 Dec; 1634():461691. PubMed ID: 33221657 [TBL] [Abstract][Full Text] [Related]
12. Localised quantitative structure-retention relationship modelling for rapid method development in reversed-phase high performance liquid chromatography. Park SH; De Pra M; Haddad PR; Grosse S; Pohl CA; Steiner F J Chromatogr A; 2020 Jan; 1609():460508. PubMed ID: 31530383 [TBL] [Abstract][Full Text] [Related]
15. Comparative characteristics of HPLC columns based on quantitative structure-retention relationships (QSRR) and hydrophobic-subtraction model. Baczek T; Kaliszan R; Novotná K; Jandera P J Chromatogr A; 2005 May; 1075(1-2):109-15. PubMed ID: 15974124 [TBL] [Abstract][Full Text] [Related]
16. QSRR modeling for the chromatographic retention behavior of some β-lactam antibiotics using forward and firefly variable selection algorithms coupled with multiple linear regression. Fouad MA; Tolba EH; El-Shal MA; El Kerdawy AM J Chromatogr A; 2018 May; 1549():51-62. PubMed ID: 29605180 [TBL] [Abstract][Full Text] [Related]
17. Retention Index Prediction Using Quantitative Structure-Retention Relationships for Improving Structure Identification in Nontargeted Metabolomics. Wen Y; Amos RIJ; Talebi M; Szucs R; Dolan JW; Pohl CA; Haddad PR Anal Chem; 2018 Aug; 90(15):9434-9440. PubMed ID: 29952550 [TBL] [Abstract][Full Text] [Related]
18. Towards a chromatographic similarity index to establish localized quantitative structure-retention models for retention prediction: Use of retention factor ratio. Tyteca E; Talebi M; Amos R; Park SH; Taraji M; Wen Y; Szucs R; Pohl CA; Dolan JW; Haddad PR J Chromatogr A; 2017 Feb; 1486():50-58. PubMed ID: 27720174 [TBL] [Abstract][Full Text] [Related]
19. Quantitative Structure Retention-Relationship Modeling: Towards an Innovative General-Purpose Strategy. Kumari P; Van Laethem T; Hubert P; Fillet M; Sacré PY; Hubert C Molecules; 2023 Feb; 28(4):. PubMed ID: 36838689 [TBL] [Abstract][Full Text] [Related]
20. Towards a chromatographic similarity index to establish localised Quantitative Structure-Retention Relationships for retention prediction. III Combination of Tanimoto similarity index, logP, and retention factor ratio to identify optimal analyte training sets for ion chromatography. Park SH; Haddad PR; Amos RIJ; Talebi M; Szucs R; Pohl CA; Dolan JW J Chromatogr A; 2017 Oct; 1520():107-116. PubMed ID: 28916393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]