These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 35094064)

  • 41. Saccharomyces cerevisiae as a Heterologous Host for Natural Products.
    Otto M; Liu D; Siewers V
    Methods Mol Biol; 2022; 2489():333-367. PubMed ID: 35524059
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Innovative Tools and Strategies for Optimizing Yeast Cell Factories.
    Guirimand G; Kulagina N; Papon N; Hasunuma T; Courdavault V
    Trends Biotechnol; 2021 May; 39(5):488-504. PubMed ID: 33008642
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamical Modeling of Optogenetic Circuits in Yeast for Metabolic Engineering Applications.
    Lovelett RJ; Zhao EM; Lalwani MA; Toettcher JE; Kevrekidis IG; L Avalos J
    ACS Synth Biol; 2021 Feb; 10(2):219-227. PubMed ID: 33492138
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration.
    de Jong BW; Shi S; Valle-Rodríguez JO; Siewers V; Nielsen J
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):477-86. PubMed ID: 25422103
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Production of biofuels and chemicals from xylose using native and engineered yeast strains.
    Kwak S; Jo JH; Yun EJ; Jin YS; Seo JH
    Biotechnol Adv; 2019; 37(2):271-283. PubMed ID: 30553928
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation.
    Cheng C; Zhang M; Xue C; Bai F; Zhao X
    J Biosci Bioeng; 2017 Feb; 123(2):141-146. PubMed ID: 27576171
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthetic biology for engineering acetyl coenzyme A metabolism in yeast.
    Nielsen J
    mBio; 2014 Nov; 5(6):e02153. PubMed ID: 25370498
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective.
    Kwak S; Jin YS
    Microb Cell Fact; 2017 May; 16(1):82. PubMed ID: 28494761
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Systems-level approaches for understanding and engineering of the oleaginous cell factory Yarrowia lipolytica.
    Poorinmohammad N; Kerkhoven EJ
    Biotechnol Bioeng; 2021 Oct; 118(10):3640-3654. PubMed ID: 34129240
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rewired cellular signaling coordinates sugar and hypoxic responses for anaerobic xylose fermentation in yeast.
    Myers KS; Riley NM; MacGilvray ME; Sato TK; McGee M; Heilberger J; Coon JJ; Gasch AP
    PLoS Genet; 2019 Mar; 15(3):e1008037. PubMed ID: 30856163
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.
    Hubmann G; Thevelein JM; Nevoigt E
    Methods Mol Biol; 2014; 1152():17-42. PubMed ID: 24744025
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fifteen years of large scale metabolic modeling of yeast: developments and impacts.
    Osterlund T; Nookaew I; Nielsen J
    Biotechnol Adv; 2012; 30(5):979-88. PubMed ID: 21846501
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genome scale models of yeast: towards standardized evaluation and consistent omic integration.
    Sánchez BJ; Nielsen J
    Integr Biol (Camb); 2015 Aug; 7(8):846-58. PubMed ID: 26079294
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhancing Yeast Alcoholic Fermentations.
    Walker GM; Walker RSK
    Adv Appl Microbiol; 2018; 105():87-129. PubMed ID: 30342724
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Co-fermentation of cellobiose and xylose by mixed culture of recombinant Saccharomyces cerevisiae and kinetic modeling.
    Chen Y; Wu Y; Zhu B; Zhang G; Wei N
    PLoS One; 2018; 13(6):e0199104. PubMed ID: 29940003
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Production of biopharmaceutical proteins by yeast: advances through metabolic engineering.
    Nielsen J
    Bioengineered; 2013; 4(4):207-11. PubMed ID: 23147168
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acetic acid stress in budding yeast: From molecular mechanisms to applications.
    Guaragnella N; Bettiga M
    Yeast; 2021 Jul; 38(7):391-400. PubMed ID: 34000094
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multiscale models quantifying yeast physiology: towards a whole-cell model.
    Lu H; Kerkhoven EJ; Nielsen J
    Trends Biotechnol; 2022 Mar; 40(3):291-305. PubMed ID: 34303549
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived hydrocarbons.
    Zhang Y; Nielsen J; Liu Z
    Biotechnol Bioeng; 2018 Sep; 115(9):2139-2147. PubMed ID: 29873064
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Whole-cell modeling in yeast predicts compartment-specific proteome constraints that drive metabolic strategies.
    Elsemman IE; Rodriguez Prado A; Grigaitis P; Garcia Albornoz M; Harman V; Holman SW; van Heerden J; Bruggeman FJ; Bisschops MMM; Sonnenschein N; Hubbard S; Beynon R; Daran-Lapujade P; Nielsen J; Teusink B
    Nat Commun; 2022 Feb; 13(1):801. PubMed ID: 35145105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.