These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 35094357)
1. Computational Modeling and Simulation to Quantify the Effects of Obstructions on the Performance of Ventricular Catheters Used in Hydrocephalus Treatment. TerMaath S; Stefanski D; Killeffer J Methods Mol Biol; 2022; 2394():767-786. PubMed ID: 35094357 [TBL] [Abstract][Full Text] [Related]
2. Toward a better understanding of the cellular basis for cerebrospinal fluid shunt obstruction: report on the construction of a bank of explanted hydrocephalus devices. Hanak BW; Ross EF; Harris CA; Browd SR; Shain W J Neurosurg Pediatr; 2016 Aug; 18(2):213-23. PubMed ID: 27035548 [TBL] [Abstract][Full Text] [Related]
3. Prevention of ventricular catheter obstruction and slit ventricle syndrome by the prophylactic use of the Integra antisiphon device in shunt therapy for pediatric hypertensive hydrocephalus: a 25-year follow-up study. Gruber RW; Roehrig B J Neurosurg Pediatr; 2010 Jan; 5(1):4-16. PubMed ID: 20043731 [TBL] [Abstract][Full Text] [Related]
4. Ventricular catheter entry site and not catheter tip location predicts shunt survival: a secondary analysis of 3 large pediatric hydrocephalus studies. Whitehead WE; Riva-Cambrin J; Kulkarni AV; Wellons JC; Rozzelle CJ; Tamber MS; Limbrick DD; Browd SR; Naftel RP; Shannon CN; Simon TD; Holubkov R; Illner A; Cochrane DD; Drake JM; Luerssen TG; Oakes WJ; Kestle JR; J Neurosurg Pediatr; 2017 Feb; 19(2):157-167. PubMed ID: 27813457 [TBL] [Abstract][Full Text] [Related]
5. A computational fluid dynamics simulation framework for ventricular catheter design optimization. Weisenberg SH; TerMaath SC; Barbier CN; Hill JC; Killeffer JA J Neurosurg; 2018 Oct; 129(4):1067-1077. PubMed ID: 29125413 [TBL] [Abstract][Full Text] [Related]
6. Flow ventricular catheters for shunted hydrocephalus: initial clinical results. Galarza M; Etus V; Sosa F; Argañaraz R; Mantese B; Gazzeri R; Montoya CG; de la Rosa P; Guerrero AL; Chaban G; Giménez Á; Amigó JM Childs Nerv Syst; 2021 Mar; 37(3):903-911. PubMed ID: 33123821 [TBL] [Abstract][Full Text] [Related]
7. Change in ventricular size and effect of ventricular catheter placement in pediatric patients with shunted hydrocephalus. Tuli S; O'Hayon B; Drake J; Clarke M; Kestle J Neurosurgery; 1999 Dec; 45(6):1329-33; discussion 1333-5. PubMed ID: 10598700 [TBL] [Abstract][Full Text] [Related]
8. A new ventricular catheter for the prevention and treatment of proximal obstruction in cerebrospinal fluid shunts. Ventureyra EC; Higgins MJ Neurosurgery; 1994 May; 34(5):924-6; discussion 926. PubMed ID: 8052397 [TBL] [Abstract][Full Text] [Related]
9. Next generation of ventricular catheters for hydrocephalus based on parametric designs. Galarza M; Giménez A; Amigó JM; Schuhmann M; Gazzeri R; Thomale U; McAllister JP Childs Nerv Syst; 2018 Feb; 34(2):267-276. PubMed ID: 28812141 [TBL] [Abstract][Full Text] [Related]
10. Factors associated with ventricular catheter movement and inaccurate catheter location: post hoc analysis of the hydrocephalus clinical research network ultrasound-guided shunt placement study. Whitehead WE; Riva-Cambrin J; Wellons JC; Kulkarni AV; Browd S; Limbrick D; Rozzelle C; Tamber MS; Simon TD; Shannon CN; Holubkov R; Oakes WJ; Luerssen TG; Walker ML; Drake JM; Kestle JR; J Neurosurg Pediatr; 2014 Aug; 14(2):173-8. PubMed ID: 24926971 [TBL] [Abstract][Full Text] [Related]
12. Silver-impregnated, antibiotic-impregnated or non-impregnated ventriculoperitoneal shunts to prevent shunt infection: the BASICS three-arm RCT. Mallucci CL; Jenkinson MD; Conroy EJ; Hartley JC; Brown M; Moitt T; Dalton J; Kearns T; Griffiths MJ; Culeddu G; Solomon T; Hughes D; Gamble C; Health Technol Assess; 2020 Mar; 24(17):1-114. PubMed ID: 32238262 [TBL] [Abstract][Full Text] [Related]
13. Computational fluid dynamics of ventricular catheters used for the treatment of hydrocephalus: a 3D analysis. Galarza M; Giménez Á; Valero J; Pellicer OP; Amigó JM Childs Nerv Syst; 2014 Jan; 30(1):105-16. PubMed ID: 23881424 [TBL] [Abstract][Full Text] [Related]
14. Effect of antibiotic-impregnated shunt catheters in decreasing the incidence of shunt infection in the treatment of hydrocephalus. Sciubba DM; Stuart RM; McGirt MJ; Woodworth GF; Samdani A; Carson B; Jallo GI J Neurosurg; 2005 Aug; 103(2 Suppl):131-6. PubMed ID: 16370278 [TBL] [Abstract][Full Text] [Related]
15. No significant improvement in the rate of accurate ventricular catheter location using ultrasound-guided CSF shunt insertion: a prospective, controlled study by the Hydrocephalus Clinical Research Network. Whitehead WE; Riva-Cambrin J; Wellons JC; Kulkarni AV; Holubkov R; Illner A; Oakes WJ; Luerssen TG; Walker ML; Drake JM; Kestle JR; J Neurosurg Pediatr; 2013 Dec; 12(6):565-74. PubMed ID: 24116981 [TBL] [Abstract][Full Text] [Related]
16. Antimicrobial-impregnated and -coated shunt catheters for prevention of infections in patients with hydrocephalus: a systematic review and meta-analysis. Konstantelias AA; Vardakas KZ; Polyzos KA; Tansarli GS; Falagas ME J Neurosurg; 2015 May; 122(5):1096-112. PubMed ID: 25768831 [TBL] [Abstract][Full Text] [Related]
17. Computational and experimental study of proximal flow in ventricular catheters. Technical note. Lin J; Morris M; Olivero W; Boop F; Sanford RA J Neurosurg; 2003 Aug; 99(2):426-31. PubMed ID: 12924722 [TBL] [Abstract][Full Text] [Related]
18. Electrospun polyurethane as an alternative ventricular catheter and in vitro model of shunt obstruction. Suresh S; Black RA J Biomater Appl; 2015 Feb; 29(7):1028-38. PubMed ID: 25245779 [TBL] [Abstract][Full Text] [Related]