These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
513 related articles for article (PubMed ID: 35094405)
1. Automatic segmentation of magnetic resonance images for high-dose-rate cervical cancer brachytherapy using deep learning. Yoganathan SA; Paul SN; Paloor S; Torfeh T; Chandramouli SH; Hammoud R; Al-Hammadi N Med Phys; 2022 Mar; 49(3):1571-1584. PubMed ID: 35094405 [TBL] [Abstract][Full Text] [Related]
2. Self-configuring nnU-Net for automatic delineation of the organs at risk and target in high-dose rate cervical brachytherapy, a low/middle-income country's experience. Duprez D; Trauernicht C; Simonds H; Williams O J Appl Clin Med Phys; 2023 Aug; 24(8):e13988. PubMed ID: 37042449 [TBL] [Abstract][Full Text] [Related]
3. Deep learning for segmentation of the cervical cancer gross tumor volume on magnetic resonance imaging for brachytherapy. Rodríguez Outeiral R; González PJ; Schaake EE; van der Heide UA; Simões R Radiat Oncol; 2023 May; 18(1):91. PubMed ID: 37248490 [TBL] [Abstract][Full Text] [Related]
4. Dual convolution-transformer UNet (DCT-UNet) for organs at risk and clinical target volume segmentation in MRI for cervical cancer brachytherapy. Kim G; Viswanathan AN; Bhatia R; Landman Y; Roumeliotis M; Erickson B; Schmidt EJ; Lee J Phys Med Biol; 2024 Oct; 69(21):. PubMed ID: 39378904 [No Abstract] [Full Text] [Related]
5. Evaluation of auto-segmentation for brachytherapy of postoperative cervical cancer using deep learning-based workflow. Wang J; Chen Y; Tu Y; Xie H; Chen Y; Luo L; Zhou P; Tang Q Phys Med Biol; 2023 Feb; 68(5):. PubMed ID: 36753762 [No Abstract] [Full Text] [Related]
7. Comparison of computed tomography and magnetic resonance imaging in cervical cancer brachytherapy target and normal tissue contouring. Eskander RN; Scanderbeg D; Saenz CC; Brown M; Yashar C Int J Gynecol Cancer; 2010 Jan; 20(1):47-53. PubMed ID: 20130502 [TBL] [Abstract][Full Text] [Related]
8. Point A vs. HR-CTV D Harmon G; Diak A; Shea SM; Yacoub JH; Small W; Harkenrider MM Brachytherapy; 2016; 15(6):825-831. PubMed ID: 27693173 [TBL] [Abstract][Full Text] [Related]
10. Automatic Segmentation Using Deep Learning to Enable Online Dose Optimization During Adaptive Radiation Therapy of Cervical Cancer. Rigaud B; Anderson BM; Yu ZH; Gobeli M; Cazoulat G; Söderberg J; Samuelsson E; Lidberg D; Ward C; Taku N; Cardenas C; Rhee DJ; Venkatesan AM; Peterson CB; Court L; Svensson S; Löfman F; Klopp AH; Brock KK Int J Radiat Oncol Biol Phys; 2021 Mar; 109(4):1096-1110. PubMed ID: 33181248 [TBL] [Abstract][Full Text] [Related]
11. A deep learning-based 3D Prompt-nnUnet model for automatic segmentation in brachytherapy of postoperative endometrial carcinoma. Xue X; Liang D; Wang K; Gao J; Ding J; Zhou F; Xu J; Liu H; Sun Q; Jiang P; Tao L; Shi W; Cheng J J Appl Clin Med Phys; 2024 Jul; 25(7):e14371. PubMed ID: 38682540 [TBL] [Abstract][Full Text] [Related]
12. Dosimetric Comparison between Three-Dimensional Magnetic Resonance Imaging-Guided and Conventional Two-Dimensional Point A-Based Intracavitary Brachytherapy Planning for Cervical Cancer. Ren J; Yuan W; Wang R; Wang Q; Li Y; Xue C; Yan Y; Ma X; Tan L; Liu Z PLoS One; 2016; 11(9):e0161932. PubMed ID: 27611853 [TBL] [Abstract][Full Text] [Related]
13. Comparison of computed tomography with magnetic resonance imaging for imaging-based clinical target volume contours in cervical cancer brachytherapy. Zolciak-Siwinska A; Kowalczyk A; Sikorska K; Bijok M; Michalski W; Gruszczynska E Brachytherapy; 2018; 17(4):667-672. PubMed ID: 29764769 [TBL] [Abstract][Full Text] [Related]
14. Practically achievable maximum high-risk clinical target volume doses in MRI-guided intracavitary brachytherapy for cervical cancer: a planning study. Menon G; Huang F; Sloboda R; Pearcey R; Ghosh S Brachytherapy; 2014; 13(6):572-8. PubMed ID: 25085455 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the Dosimetric Influence of Applicator Displacement on 2D and 3D Brachytherapy for Cervical Cancer Treatment. Wu A; Tang D; Wu A; Liu Y; Qian L; Zhu L Technol Cancer Res Treat; 2021; 20():15330338211041201. PubMed ID: 34569371 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of an MR-only interstitial gynecologic brachytherapy workflow using MR-line marker for catheter reconstruction. Shaaer A; Paudel M; Smith M; Tonolete F; Nicolae A; Leung E; Ravi A Brachytherapy; 2020; 19(5):642-650. PubMed ID: 32712027 [TBL] [Abstract][Full Text] [Related]
17. Automatic segmentation of high-risk clinical target volume for tandem-and-ovoids brachytherapy patients using an asymmetric dual-path convolutional neural network. Cao Y; Vassantachart A; Ragab O; Bian S; Mitra P; Xu Z; Gallogly AZ; Cui J; Shen ZL; Balik S; Gribble M; Chang EL; Fan Z; Yang W Med Phys; 2022 Mar; 49(3):1712-1722. PubMed ID: 35080018 [TBL] [Abstract][Full Text] [Related]
18. Dosimetric analysis of 3D image-guided HDR brachytherapy planning for the treatment of cervical cancer: is point A-based dose prescription still valid in image-guided brachytherapy? Kim H; Beriwal S; Houser C; Huq MS Med Dosim; 2011; 36(2):166-70. PubMed ID: 20488690 [TBL] [Abstract][Full Text] [Related]
19. Deep learning-based auto-segmentation of organs at risk in high-dose rate brachytherapy of cervical cancer. Mohammadi R; Shokatian I; Salehi M; Arabi H; Shiri I; Zaidi H Radiother Oncol; 2021 Jun; 159():231-240. PubMed ID: 33831446 [TBL] [Abstract][Full Text] [Related]
20. 45 or 50 Gy, Which is the Optimal Radiotherapy Pelvic Dose in Locally Advanced Cervical Cancer in the Perspective of Reaching Magnetic Resonance Image-guided Adaptive Brachytherapy Planning Aims? Mazeron R; Petit C; Rivin E; Limkin E; Dumas I; Maroun P; Annede P; Martinetti F; Seisen T; Lefkopoulos D; Chargari C; Haie-Meder C Clin Oncol (R Coll Radiol); 2016 Mar; 28(3):171-7. PubMed ID: 26547694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]