These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 35094471)
1. In vivo characterization of the threshold of laser-induced optical breakdown (LIOB) of a fractional 1064 nm Nd:YAG picosecond laser by optical coherence tomography: A step forward to precision laser therapy. Wang CC J Cosmet Dermatol; 2022 Sep; 21(9):3817-3820. PubMed ID: 35094471 [TBL] [Abstract][Full Text] [Related]
2. Optical Effects of Focused Fractional Nanosecond 1064-nm Nd:YAG Laser: Techniques of Application on Human Skin. Liu C; Huang HY; Chang YY; Sun CK; Chia SH; Liao YH Lasers Surg Med; 2024 Aug; 56(6):557-563. PubMed ID: 38890780 [TBL] [Abstract][Full Text] [Related]
3. A comparative study with a 755 nm picosecond Alexandrite laser with a diffractive lens array and a 532 nm/1064 nm Nd:YAG with a holographic optic. Tanghetti Md E; Jennings J Lasers Surg Med; 2018 Jan; 50(1):37-44. PubMed ID: 29111604 [TBL] [Abstract][Full Text] [Related]
4. Histology of ex vivo skin after treatment with fractionated picosecond Nd:YAG laser in high and low-energy settings. Yeh YT; Peng JH; Peng P J Cosmet Laser Ther; 2020; 22(1):43-47. PubMed ID: 31900067 [No Abstract] [Full Text] [Related]
5. Melanin-dependent tissue interactions induced by a 755-nm picosecond-domain laser: complementary visualization by optical imaging and histology. Jacobsen K; Ortner VK; Fredman GL; Christensen RL; Dierickx C; Tanghetti E; Paasch U; Haedersdal M Lasers Med Sci; 2023 Jul; 38(1):160. PubMed ID: 37450199 [TBL] [Abstract][Full Text] [Related]
6. An update on fractional picosecond laser treatment: histology and clinical applications. Zhou Y; Hamblin MR; Wen X Lasers Med Sci; 2023 Jan; 38(1):45. PubMed ID: 36658259 [TBL] [Abstract][Full Text] [Related]
7. The histology of skin treated with a picosecond alexandrite laser and a fractional lens array. Tanghetti EA Lasers Surg Med; 2016 Sep; 48(7):646-52. PubMed ID: 27252086 [TBL] [Abstract][Full Text] [Related]
8. Microlesion healing dynamics in in vivo porcine skin after treatment with 1064 nm picosecond-domain Nd:YAG laser. Baleisis J; Rudys R J Biophotonics; 2023 Apr; 16(4):e202200349. PubMed ID: 36606608 [TBL] [Abstract][Full Text] [Related]
9. Laser-induced optical breakdown is a prior strategy for acquired melanin-increased disorder in dermal layer. Lin YJ; Wu BQ; Chang CC; Huang YH; Wang YJ Lasers Med Sci; 2024 Aug; 39(1):216. PubMed ID: 39141143 [TBL] [Abstract][Full Text] [Related]
10. Effect of fractional picosecond laser therapy using a diffractive optical lens on histological tissue reaction. Rhee YH; Park BC; Jung JY; Yoo SH; Mo JH; Chung PS J Cosmet Laser Ther; 2024; 26(1-4):54-60. PubMed ID: 39171933 [TBL] [Abstract][Full Text] [Related]
11. Characterization of picosecond laser-induced optical breakdown using harmonic generation microscopy. Liu C; Wu PJ; Chia SH; Sun CK; Liao YH Lasers Surg Med; 2023 Aug; 55(6):561-567. PubMed ID: 37051896 [TBL] [Abstract][Full Text] [Related]
12. Improvement in linear depressed atrophic scar using 755-nm picosecond alexandrite laser vs. ablative fractional carbon dioxide laser. Lee DW; Ryu H; Choi HJ; Park ES J Cosmet Laser Ther; 2022 Jul; 24(1-5):48-55. PubMed ID: 35864581 [TBL] [Abstract][Full Text] [Related]
13. Dependence of laser-induced optical breakdown on skin type during 1064 nm picosecond laser treatment. Kim H; Hwang JK; Choi J; Kang HW J Biophotonics; 2021 Sep; 14(9):e202100129. PubMed ID: 34114344 [TBL] [Abstract][Full Text] [Related]
14. A Comparison Study of the Nonablative Fractional 1565-nm Er: glass and the Picosecond Fractional 1064/532-nm Nd: YAG Lasers in the Treatment of Striae Alba: A Split Body Double-Blinded Trial. Zaleski-Larsen LA; Jones IT; Guiha I; Wu DC; Goldman MP Dermatol Surg; 2018 Oct; 44(10):1311-1316. PubMed ID: 29746426 [TBL] [Abstract][Full Text] [Related]
15. Assessing the Outcomes of Focused Heating of the Skin by a Long-Pulsed 1064 nm Laser with an Integrated Scanner, Infrared Thermal Guidance, and Optical Coherence Tomography. Mehrabi JN; Kelly KM; Holmes JD; Zachary CB Lasers Surg Med; 2021 Aug; 53(6):806-814. PubMed ID: 33450784 [TBL] [Abstract][Full Text] [Related]
16. A comparative study of the efficacy of fractional neodymium-doped yttrium aluminum garnet (Nd:YAG) laser therapy alone and in combination with erbium:YAG laser therapy: tracing and objective measurement of melanin index in macular amyloidosis. Nilforoushzadeh MA; Zolghadr S; Heidari-Kharaji M; Alavi S; Mahmoudbeyk M Lasers Med Sci; 2020 Jul; 35(5):1171-1177. PubMed ID: 31916020 [TBL] [Abstract][Full Text] [Related]
17. In vivo multiphoton-microscopy of picosecond-laser-induced optical breakdown in human skin. Balu M; Lentsch G; Korta DZ; König K; Kelly KM; Tromberg BJ; Zachary CB Lasers Surg Med; 2017 Aug; 49(6):555-562. PubMed ID: 28333369 [TBL] [Abstract][Full Text] [Related]
18. Serial change in laser-induced optical breakdown by 1064-nm Nd:YAG picosecond laser. Hwang CY; Chen CC Photodermatol Photoimmunol Photomed; 2020 Jan; 36(1):63-64. PubMed ID: 31396986 [No Abstract] [Full Text] [Related]
19. Correlation between the efficacy of picosecond-domain laser treatment for solar lentigo and the vascularity in the upper dermis using optical coherence tomography angiography in Asian women. Hara Y; Ninomiya M; Yamashita T; Negishi K Lasers Surg Med; 2024 Jan; 56(1):62-67. PubMed ID: 37676016 [TBL] [Abstract][Full Text] [Related]
20. In Vivo Identification of Skin Photodamage Induced by Fractional CO Ng CY; Wang TA; Lee HC; Huang BH; Tsai MT Diagnostics (Basel); 2022 Mar; 12(4):. PubMed ID: 35453872 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]