These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35094553)

  • 1. Rate of formation of caustics in heavy particles advected by turbulence.
    Bhatnagar A; Pandey V; Perlekar P; Mitra D
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210086. PubMed ID: 35094553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. λ-Navier-Stokes turbulence.
    Alexakis A; Biferale L
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210243. PubMed ID: 35094557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-regularization in turbulence from the Kolmogorov 4/5-law and alignment.
    Drivas TD
    Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2226):20210033. PubMed ID: 35527633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical model for collisions and recollisions of inertial particles in mixing flows.
    Gustavsson K; Mehlig B
    Eur Phys J E Soft Matter; 2016 May; 39(5):55. PubMed ID: 27225619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced droplet collision rates and impact velocities in turbulent flows: The effect of poly-dispersity and transient phases.
    James M; Ray SS
    Sci Rep; 2017 Sep; 7(1):12231. PubMed ID: 28947811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-similar properties of avalanche statistics in a simple turbulent model.
    Benzi R; Castaldi I; Toschi F; Trampert J
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2218):20210074. PubMed ID: 35034485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition of fluctuations from Gaussian state to turbulent state.
    Gotoh T; Yang J
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2218):20210097. PubMed ID: 35034486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A correspondence between the multifractal model of turbulence and the Navier-Stokes equations.
    Dubrulle B; Gibbon JD
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2218):20210092. PubMed ID: 35034496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classical 1/3 scaling of convection holds up to Ra = 10
    Iyer KP; Scheel JD; Schumacher J; Sreenivasan KR
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7594-7598. PubMed ID: 32213591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing pedestal structure in JET-ILW H-mode plasmas with a model for stiff ETG turbulent heat transport.
    Field AR; Chapman-Oplopoiou B; Connor JW; Frassinetti L; Hatch DR; Roach CM; Saarelma S;
    Philos Trans A Math Phys Eng Sci; 2023 Feb; 381(2242):20210228. PubMed ID: 36587822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Prandtl-Kolmogorov 1-equation model of turbulence.
    Kean K; Layton W; Schneier M
    Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2226):20210054. PubMed ID: 35527632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative velocity distribution of inertial particles in turbulence: A numerical study.
    Perrin VE; Jonker HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043022. PubMed ID: 26565347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are turbulence effects on droplet collision-coalescence a key to understanding observed rain formation in clouds?
    Chandrakar KK; Morrison H; Grabowski WW; Lawson RP
    Proc Natl Acad Sci U S A; 2024 Jul; 121(27):e2319664121. PubMed ID: 38917003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Second order structure functions for higher powers of turbulent velocity.
    Paraz F; Bandi MM
    J Phys Condens Matter; 2019 Dec; 31(48):484001. PubMed ID: 31387090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instability of a liquid sheet with viscosity contrast in inertial microfluidics.
    Patel K; Stark H
    Eur Phys J E Soft Matter; 2021 Nov; 44(11):144. PubMed ID: 34845537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical properties of thermally expandable particles in soft-turbulence Rayleigh-Bénard convection.
    Alards KMJ; Kunnen RPJ; Clercx HJH; Toschi F
    Eur Phys J E Soft Matter; 2019 Sep; 42(9):126. PubMed ID: 31512076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal disequilibration of ions and electrons by collisionless plasma turbulence.
    Kawazura Y; Barnes M; Schekochihin AA
    Proc Natl Acad Sci U S A; 2019 Jan; 116(3):771-776. PubMed ID: 30598448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Galerkin-truncated Burgers equation: crossover from inviscid-thermalized to Kardar-Parisi-Zhang scaling.
    Cartes C; Tirapegui E; Pandit R; Brachet M
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210090. PubMed ID: 35094560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaling properties of particle density fields formed in simulated turbulent flows.
    Hogan RC; Cuzzi JN; Dobrovolskis AR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):1674-80. PubMed ID: 11969949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A randomly stirred model for Bolgiano-Obukhov scaling in turbulence in a stably stratified fluid.
    Bhattacharjee JK
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210075. PubMed ID: 35094554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.