These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35094565)

  • 21. Buoyancy-Driven Flow through a Bed of Solid Particles Produces a New Form of Rayleigh-Taylor Turbulence.
    Sardina G; Brandt L; Boffetta G; Mazzino A
    Phys Rev Lett; 2018 Nov; 121(22):224501. PubMed ID: 30547608
    [TBL] [Abstract][Full Text] [Related]  

  • 22. What is certain and what is not so certain in our knowledge of Rayleigh-Taylor mixing?
    Anisimov SI; Drake RP; Gauthier S; Meshkov EE; Abarzhi SI
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130266. PubMed ID: 24146014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Validation and application of the lattice Boltzmann algorithm for a turbulent immiscible Rayleigh-Taylor system.
    Tavares HS; Biferale L; Sbragaglia M; Mailybaev AA
    Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2208):20200396. PubMed ID: 34455841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anomalous scaling of three-dimensional Rayleigh-Taylor turbulence.
    Matsumoto T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):055301. PubMed ID: 19518513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compressibility effects in Rayleigh-Taylor instability-induced flows.
    Gauthier S; Le Creurer B
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1681-704. PubMed ID: 20211880
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The density ratio dependence of self-similar Rayleigh-Taylor mixing.
    Youngs DL
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120173. PubMed ID: 24146005
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Classical 1/3 scaling of convection holds up to Ra = 10
    Iyer KP; Scheel JD; Schumacher J; Sreenivasan KR
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7594-7598. PubMed ID: 32213591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation approach.
    Poujade O; Peybernes M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016316. PubMed ID: 20365469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Completing the mechanical energy pathways in turbulent Rayleigh-Bénard convection.
    Gayen B; Hughes GO; Griffiths RW
    Phys Rev Lett; 2013 Sep; 111(12):124301. PubMed ID: 24093264
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phenomenology of Rayleigh-Taylor turbulence.
    Chertkov M
    Phys Rev Lett; 2003 Sep; 91(11):115001. PubMed ID: 14525432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing.
    Morgan BE; Schilling O; Hartland TA
    Phys Rev E; 2018 Jan; 97(1-1):013104. PubMed ID: 29448443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heat transport in low-Rossby-number Rayleigh-Bénard convection.
    Julien K; Knobloch E; Rubio AM; Vasil GM
    Phys Rev Lett; 2012 Dec; 109(25):254503. PubMed ID: 23368470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth rate of the turbulent magnetic Rayleigh-Taylor instability.
    Briard A; Gréa BJ; Nguyen F
    Phys Rev E; 2022 Dec; 106(6-2):065201. PubMed ID: 36671106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonideal Rayleigh-Taylor mixing.
    Lim H; Iwerks J; Glimm J; Sharp DH
    Proc Natl Acad Sci U S A; 2010 Jul; 107(29):12786-92. PubMed ID: 20615983
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring the origin of turbulent Taylor rolls.
    Jeganathan V; Alba K; Ostilla-Mónico R
    Philos Trans A Math Phys Eng Sci; 2023 Mar; 381(2243):20220130. PubMed ID: 36709783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The local wavenumber model for computation of turbulent mixing.
    Kurien S; Pal N
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210076. PubMed ID: 35094556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Convective heat transport in a rotating fluid layer of infinite Prandtl number: optimum fields and upper bounds on Nusselt number.
    Vitanov NK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026322. PubMed ID: 12636815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scaling in laminar natural convection in laterally heated cavities: is turbulence essential in the classical scaling of heat transfer?
    Yu H; Li N; Ecke RE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026303. PubMed ID: 17930138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulations of two-dimensional turbulent convection in a density-stratified fluid.
    Rogers TM; Glatzmaier GA; Woosley SE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026315. PubMed ID: 12636808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Velocity-informed upper bounds on the convective heat transport induced by internal heat sources and sinks.
    Bouillaut V; Flesselles B; Miquel B; Aumaître S; Gallet B
    Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2225):20210034. PubMed ID: 35465716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.