BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35094660)

  • 1. SLC23A3 is a renal hypoxanthine transporter.
    Hosoyamada M; Tomioka NH; Watanabe T; Yasuno N; Uchida S; Shibata S
    Nucleosides Nucleotides Nucleic Acids; 2022; 41(12):1279-1286. PubMed ID: 35094660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleobase transport in opossum kidney epithelial cells and Xenopus laevis oocytes: the characterisation, structure-activity relationship of uracil analogues and oocyte expression studies of sodium-dependent and -independent hypoxanthine uptake.
    Shayeghi M; Akerman R; Jarvis SM
    Biochim Biophys Acta; 1999 Jan; 1416(1-2):109-18. PubMed ID: 9889340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of nucleobase transport in LLC-PK1 renal epithelia by protein kinase C.
    Griffith DA; Jarvis SM
    Biochim Biophys Acta; 1996 Oct; 1284(2):213-20. PubMed ID: 8914586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High affinity sodium-dependent nucleobase transport in cultured renal epithelial cells (LLC-PK1).
    Griffith DA; Jarvis SM
    J Biol Chem; 1993 Sep; 268(27):20085-90. PubMed ID: 8376366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a sodium-dependent concentrative nucleobase-transport system in guinea-pig kidney cortex brush-border membrane vesicles.
    Griffith DA; Jarvis SM
    Biochem J; 1994 Nov; 303 ( Pt 3)(Pt 3):901-5. PubMed ID: 7980460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of nucleobase transport in rabbit choroid plexus. Evidence for a Na(+)-dependent nucleobase transporter with broad substrate selectivity.
    Washington CB; Giacomini KM
    J Biol Chem; 1995 Sep; 270(39):22816-9. PubMed ID: 7559412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The kinetics of hypoxanthine transport across the perfused choroid plexus of the sheep.
    Redzic ZB; Gasic JM; Segal MB; Markovic ID; Isakovic AJ; Rakic MLj; Thomas SA; Rakic LM
    Brain Res; 2002 Jan; 925(2):169-75. PubMed ID: 11792365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of hypoxanthine transport and xanthine oxidase activity in brain capillaries.
    Betz AL
    J Neurochem; 1985 Feb; 44(2):574-9. PubMed ID: 3838099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substitution F569S converts UapA, a specific uric acid-xanthine transporter, into a broad specificity transporter for purine-related solutes.
    Amillis S; Koukaki M; Diallinas G
    J Mol Biol; 2001 Nov; 313(4):765-74. PubMed ID: 11697902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The solute transport profile of two Aza-guanine transporters from the Honey bee pathogen Paenibacillus larvae.
    Alexander CR; Dingman DW; Schultes NP; Mourad GS
    FEMS Microbiol Lett; 2018 Apr; 365(7):. PubMed ID: 29385571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for sodium-dependent hypoxanthine uptake in isolated guinea pig ventricular myocytes: stimulation by extracellular Ni2+.
    Haddock PS
    Cardiovasc Res; 1995 Jul; 30(1):130-7. PubMed ID: 7553715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of [14C]hypoxanthine by sheep choroid plexus epithelium as a monolayer in primary culture: Na+-dependent and Na+-independent uptake by the apical membrane and rapid intracellular metabolic conversion to nucleotides.
    Isakovic AJ; Dencic SM; Segal MB; Redzic ZB
    Neurosci Lett; 2008 Jan; 431(2):135-40. PubMed ID: 18164814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+ gradient-dependent transport of hypoxanthine by calf intestinal brush border membrane vesicles.
    Theisinger A; Grenacher B; Scharrer E
    J Comp Physiol B; 2003 Mar; 173(2):165-70. PubMed ID: 12624654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purine nucleobase transport in the intraerythrocytic malaria parasite.
    Downie MJ; Saliba KJ; Bröer S; Howitt SM; Kirk K
    Int J Parasitol; 2008 Feb; 38(2):203-9. PubMed ID: 17765902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of sodium-independent and sodium-dependent nucleobase transport activities by tyrosine kinase inhibitors.
    Damaraju VL; Kuzma M; Cass CE; Sawyer MB
    Cancer Chemother Pharmacol; 2015 Nov; 76(5):1093-8. PubMed ID: 26330332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Leishmania major nucleobase transporter responsible for allopurinol uptake is a functional homolog of the Trypanosoma brucei H2 transporter.
    Al-Salabi MI; Wallace LJ; De Koning HP
    Mol Pharmacol; 2003 Apr; 63(4):814-20. PubMed ID: 12644582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trypanosoma brucei bloodstream forms express highly specific and separate transporters for adenine and hypoxanthine; evidence for a new protozoan purine transporter family?
    Campagnaro GD; Alzahrani KJ; Munday JC; De Koning HP
    Mol Biochem Parasitol; 2018 Mar; 220():46-56. PubMed ID: 29371154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absorption and metabolism of purines by the lower intestine of the chicken.
    Karasawa Y; Ishii T; Kubota T
    Comp Biochem Physiol A Comp Physiol; 1991; 100(1):227-30. PubMed ID: 1682101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of expression of taurine transport in two continuous renal epithelial cell lines and inhibition of taurine transporter by a site-directed antibody.
    Han X; Chesney RW; Budreau AM; Jones DP
    Adv Exp Med Biol; 1996; 403():173-91. PubMed ID: 8915355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Molecular mechanism for urinary excretion of hypoxanthine and xanthine].
    Hosoyamada M; Ichida K
    Nihon Rinsho; 2003 Jan; 61 Suppl 1():450-4. PubMed ID: 12629764
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.