These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 35094782)

  • 41. Recent advances in the design of microfluidic technologies for the manufacture of drug releasing particles.
    Forigua A; Kirsch RL; Willerth SM; Elvira KS
    J Control Release; 2021 May; 333():258-268. PubMed ID: 33766691
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Degenerative disease-on-a-chip: Developing microfluidic models for rapid availability of newer therapies.
    Jahagirdar D; Bangde P; Jain R; Dandekar P
    Biotechnol J; 2021 Oct; 16(10):e2100154. PubMed ID: 34390543
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On-chip anticancer drug screening - Recent progress in microfluidic platforms to address challenges in chemotherapy.
    Dhiman N; Kingshott P; Sumer H; Sharma CS; Rath SN
    Biosens Bioelectron; 2019 Jul; 137():236-254. PubMed ID: 31121461
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microfluidic 'brain-on chip' systems to supplement neurological practice: development, applications and considerations.
    Jarrah R; Nathani KR; Bhandarkar S; Ezeudu CS; Nguyen RT; Amare A; Aljameey UA; Jarrah SI; Bhandarkar AR; Fiani B
    Regen Med; 2023 May; 18(5):413-423. PubMed ID: 37125510
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recent progress of 3D-printed microneedles for transdermal drug delivery.
    Yang Q; Zhong W; Xu L; Li H; Yan Q; She Y; Yang G
    Int J Pharm; 2021 Jan; 593():120106. PubMed ID: 33232756
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms.
    Vera D; García-Díaz M; Torras N; Álvarez M; Villa R; Martinez E
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):13920-13933. PubMed ID: 33739812
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lung-on-chip microdevices to foster pulmonary drug discovery.
    Sisodia Y; Shah K; Ali Sayyed A; Jain M; Ali SA; Gondaliya P; Kalia K; Tekade RK
    Biomater Sci; 2023 Jan; 11(3):777-790. PubMed ID: 36537540
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cultivating human tissues and organs over lab-on-a-chip models: Recent progress and applications.
    Bhagat S; Singh S
    Prog Mol Biol Transl Sci; 2022; 187(1):205-240. PubMed ID: 35094775
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Piezoresistive Conductive Microfluidic Membranes for Low-Cost On-Chip Pressure and Flow Sensing.
    Islam MN; Doria SM; Fu X; Gagnon ZR
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214391
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tomorrow today: organ-on-a-chip advances towards clinically relevant pharmaceutical and medical in vitro models.
    Rothbauer M; Rosser JM; Zirath H; Ertl P
    Curr Opin Biotechnol; 2019 Feb; 55():81-86. PubMed ID: 30189349
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedical Applications.
    Ashraf MW; Tayyaba S; Afzulpurkar N
    Int J Mol Sci; 2011; 12(6):3648-704. PubMed ID: 21747700
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microfluidic Devices for Drug Delivery Systems and Drug Screening.
    Damiati S; Kompella UB; Damiati SA; Kodzius R
    Genes (Basel); 2018 Feb; 9(2):. PubMed ID: 29462948
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Organ-on-a-Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine.
    Rodrigues RO; Sousa PC; Gaspar J; Bañobre-López M; Lima R; Minas G
    Small; 2020 Dec; 16(51):e2003517. PubMed ID: 33236819
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microfluidic devices for the detection of disease-specific proteins and other macromolecules, disease modelling and drug development: A review.
    Amir S; Arathi A; Reshma S; Mohanan PV
    Int J Biol Macromol; 2023 Apr; 235():123784. PubMed ID: 36822284
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Emerging applications of paper-based analytical devices for drug analysis: A review.
    Noviana E; Carrão DB; Pratiwi R; Henry CS
    Anal Chim Acta; 2020 Jun; 1116():70-90. PubMed ID: 32389191
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Translational Nanomedicines Across Human Reproductive Organs Modeling on Microfluidic Chips: State-of-the-Art and Future Prospects.
    Sood A; Kumar A; Gupta VK; Kim CM; Han SS
    ACS Biomater Sci Eng; 2023 Jan; 9(1):62-84. PubMed ID: 36541361
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineering mechanobiology through organoids-on-chip: A strategy to boost therapeutics.
    Charelli LE; Ferreira JPD; Naveira-Cotta CP; Balbino TA
    J Tissue Eng Regen Med; 2021 Nov; 15(11):883-899. PubMed ID: 34339588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.