These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 3509494)
1. Discrepancies in the effect of protein binding on beta-lactam antibiotics. Bakhtiar M; Selwyn S Chemioterapia; 1987 Jun; 6(2 Suppl):54-6. PubMed ID: 3509494 [No Abstract] [Full Text] [Related]
2. 5,6-Cis-penems: broad-spectrum anti-methicillin-resistant Staphylococcus aureus beta-lactam antibiotics. Ishiguro M; Tanaka R; Namikawa K; Nasu T; Inoue H; Nakatsuka T; Oyama Y; Imajo S J Med Chem; 1997 Jul; 40(14):2126-32. PubMed ID: 9216830 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of the bacteriolytic effect of beta-lactam-antibiotics on Staphylococcus aureus by the polyanionic drugs suramin and Evans Blue. Wecke J; Franz M; Giesbrecht P APMIS; 1990 Jan; 98(1):71-81. PubMed ID: 2302344 [TBL] [Abstract][Full Text] [Related]
4. Penicillin binding proteins and resistance to beta-lactam antibiotics in Staphylococcus aureus. Fontana R; Rossi L; Rong YC; Tonin E Chemioterapia; 1985 Feb; 4(1):53-5. PubMed ID: 3986945 [No Abstract] [Full Text] [Related]
5. False synergy between vancomycin and beta-lactams against glycopeptide-intermediate Staphylococcus aureus (GISA) caused by inappropriate testing methods. Goldstein FW; Atoui R; Ben Ali A; Nguyen JC; Ly A; Kitzis MD Clin Microbiol Infect; 2004 Apr; 10(4):342-5. PubMed ID: 15059127 [TBL] [Abstract][Full Text] [Related]
6. Polyamine effects on antibiotic susceptibility in bacteria. Kwon DH; Lu CD Antimicrob Agents Chemother; 2007 Jun; 51(6):2070-7. PubMed ID: 17438056 [TBL] [Abstract][Full Text] [Related]
7. N-thiolated 2-oxazolidinones: a new family of antibacterial agents for methicillin-resistant Staphylococcus aureus and Bacillus anthracis. Mishra RK; Revell KD; Coates CM; Turos E; Dickey S; Lim DV Bioorg Med Chem Lett; 2006 Apr; 16(8):2081-3. PubMed ID: 16464583 [TBL] [Abstract][Full Text] [Related]
8. Impact of plasma protein binding on antimicrobial activity using time-killing curves. Zeitlinger MA; Sauermann R; Traunmüller F; Georgopoulos A; Müller M; Joukhadar C J Antimicrob Chemother; 2004 Nov; 54(5):876-80. PubMed ID: 15472003 [TBL] [Abstract][Full Text] [Related]
9. ILSMRs (intensifier of beta-lactam-susceptibility in methicillin-resistant Staphylococcus aureus) from Tara [Caesalpinia spinosa (Molina) Kuntze]. Kondo K; Takaishi Y; Shibata H; Higuti T Phytomedicine; 2006 Feb; 13(3):209-12. PubMed ID: 16428032 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of antibacterial activity of beta-lactam antibiotics by [P2W18O62]6-, [SiMo12O40]4-, and [PTi2W10O40]7- against methicillin-resistant and vancomycin-resistant Staphylococcus aureus. Inoue M; Suzuki T; Fujita Y; Oda M; Matsumoto N; Yamase T J Inorg Biochem; 2006 Jul; 100(7):1225-33. PubMed ID: 16563513 [TBL] [Abstract][Full Text] [Related]
11. Impact of mecA promoter mutations on mecA expression and beta-lactam resistance levels. Ender M; McCallum N; Berger-Bächi B Int J Med Microbiol; 2008 Oct; 298(7-8):607-17. PubMed ID: 18456552 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of synergy between epigallocatechin gallate and beta-lactams against methicillin-resistant Staphylococcus aureus. Zhao WH; Hu ZQ; Okubo S; Hara Y; Shimamura T Antimicrob Agents Chemother; 2001 Jun; 45(6):1737-42. PubMed ID: 11353619 [TBL] [Abstract][Full Text] [Related]
13. Molecular correlation between in vitro and in vivo activity of beta-lactam and beta-lactamase inhibitor combinations against methicillin-resistant Staphylococcus aureus. Fasola EL; Fasching CE; Peterson LR J Lab Clin Med; 1995 Feb; 125(2):200-11. PubMed ID: 7844469 [TBL] [Abstract][Full Text] [Related]
14. Cyslabdan, a new potentiator of imipenem activity against methicillin-resistant Staphylococcus aureus, produced by Streptomyces sp. K04-0144. II. Biological activities. Fukumoto A; Kim YP; Hanaki H; Shiomi K; Tomoda H; Omura S J Antibiot (Tokyo); 2008 Jan; 61(1):7-10. PubMed ID: 18305353 [TBL] [Abstract][Full Text] [Related]
15. Plasma protein binding may reduce antimicrobial activity by preventing intra-bacterial uptake of antibiotics, for example clindamycin. Burian A; Wagner C; Stanek J; Manafi M; Böhmdorfer M; Jäger W; Zeitlinger M J Antimicrob Chemother; 2011 Jan; 66(1):134-7. PubMed ID: 21044975 [TBL] [Abstract][Full Text] [Related]
16. Activity of three {beta}-lactams (ertapenem, meropenem and ampicillin) against intraphagocytic Listeria monocytogenes and Staphylococcus aureus. Lemaire S; Van Bambeke F; Mingeot-Leclercq MP; Tulkens PM J Antimicrob Chemother; 2005 Jun; 55(6):897-904. PubMed ID: 15860552 [TBL] [Abstract][Full Text] [Related]
17. Electrophoretic properties of beta-lactam and serum protein conjugates. Zdziarski P Acta Pol Pharm; 2000; 57(6):411-3. PubMed ID: 11243245 [TBL] [Abstract][Full Text] [Related]
18. N-Thiolated beta-lactam antibacterials: effects of the N-organothio substituent on anti-MRSA activity. Heldreth B; Long TE; Jang S; Reddy GS; Turos E; Dickey S; Lim DV Bioorg Med Chem; 2006 Jun; 14(11):3775-84. PubMed ID: 16480881 [TBL] [Abstract][Full Text] [Related]
19. A comparison of the activity of tigecycline against multiresistant clinical isolates of Staphylococcus aureus and Streptococcus agalactiae. Sorlozano A; Gutierrez J; Roman E; de Dios Luna J; Roman J; Liebana J; Piedrola G Diagn Microbiol Infect Dis; 2007 Aug; 58(4):487-9. PubMed ID: 17509803 [TBL] [Abstract][Full Text] [Related]
20. beta-lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus. Maiques E; Ubeda C; Campoy S; Salvador N; Lasa I; Novick RP; Barbé J; Penadés JR J Bacteriol; 2006 Apr; 188(7):2726-9. PubMed ID: 16547063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]